語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Course on Topological Vector Spaces
~
SpringerLink (Online service)
A Course on Topological Vector Spaces
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
A Course on Topological Vector Spaces/ by Jürgen Voigt.
作者:
Voigt, Jürgen.
面頁冊數:
VIII, 155 p. 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Functional Analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-32945-7
ISBN:
9783030329457
A Course on Topological Vector Spaces
Voigt, Jürgen.
A Course on Topological Vector Spaces
[electronic resource] /by Jürgen Voigt. - 1st ed. 2020. - VIII, 155 p. 1 illus. in color.online resource. - Compact Textbooks in Mathematics,2296-4568. - Compact Textbooks in Mathematics,.
Initial topology, topological vector spaces, weak topology -- Convexity, separation theorems, locally convex spaces -- Polars, bipolar theorem, polar topologies -- The theorems of Tikhonov and Alaoglu-Bourbaki -- The theorem of Mackey-Arens -- Topologies on E'', quasi-barrelled and barrelled spaces -- Reflexivity -- Completeness -- Locally convex final topology, topology of D(\Omega) -- Precompact -- compact – complete -- The theorems of Banach--Dieudonne and Krein—Smulian -- The theorems of Eberlein--Grothendieck and Eberlein—Smulian -- The theorem of Krein -- Weakly compact sets in L_1(\mu) -- \cB_0''=\cB -- The theorem of Krein—Milman -- A The theorem of Hahn-Banach -- B Baire's theorem and the uniform boundedness theorem.
This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(Ω) and the space of distributions, and the Krein-Milman theorem. The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians. .
ISBN: 9783030329457
Standard No.: 10.1007/978-3-030-32945-7doiSubjects--Topical Terms:
672166
Functional Analysis.
LC Class. No.: QA319-329.9
Dewey Class. No.: 515.7
A Course on Topological Vector Spaces
LDR
:03198nam a22003975i 4500
001
1019618
003
DE-He213
005
20200703134510.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030329457
$9
978-3-030-32945-7
024
7
$a
10.1007/978-3-030-32945-7
$2
doi
035
$a
978-3-030-32945-7
050
4
$a
QA319-329.9
072
7
$a
PBKF
$2
bicssc
072
7
$a
MAT037000
$2
bisacsh
072
7
$a
PBKF
$2
thema
082
0 4
$a
515.7
$2
23
100
1
$a
Voigt, Jürgen.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1314928
245
1 2
$a
A Course on Topological Vector Spaces
$h
[electronic resource] /
$c
by Jürgen Voigt.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2020.
300
$a
VIII, 155 p. 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Compact Textbooks in Mathematics,
$x
2296-4568
505
0
$a
Initial topology, topological vector spaces, weak topology -- Convexity, separation theorems, locally convex spaces -- Polars, bipolar theorem, polar topologies -- The theorems of Tikhonov and Alaoglu-Bourbaki -- The theorem of Mackey-Arens -- Topologies on E'', quasi-barrelled and barrelled spaces -- Reflexivity -- Completeness -- Locally convex final topology, topology of D(\Omega) -- Precompact -- compact – complete -- The theorems of Banach--Dieudonne and Krein—Smulian -- The theorems of Eberlein--Grothendieck and Eberlein—Smulian -- The theorem of Krein -- Weakly compact sets in L_1(\mu) -- \cB_0''=\cB -- The theorem of Krein—Milman -- A The theorem of Hahn-Banach -- B Baire's theorem and the uniform boundedness theorem.
520
$a
This book provides an introduction to the theory of topological vector spaces, with a focus on locally convex spaces. It discusses topologies in dual pairs, culminating in the Mackey-Arens theorem, and also examines the properties of the weak topology on Banach spaces, for instance Banach’s theorem on weak*-closed subspaces on the dual of a Banach space (alias the Krein-Smulian theorem), the Eberlein-Smulian theorem, Krein’s theorem on the closed convex hull of weakly compact sets in a Banach space, and the Dunford-Pettis theorem characterising weak compactness in L1-spaces. Lastly, it addresses topics such as the locally convex final topology, with the application to test functions D(Ω) and the space of distributions, and the Krein-Milman theorem. The book adopts an “economic” approach to interesting topics, and avoids exploring all the arising side topics. Written in a concise mathematical style, it is intended primarily for advanced graduate students with a background in elementary functional analysis, but is also useful as a reference text for established mathematicians. .
650
1 4
$a
Functional Analysis.
$3
672166
650
0
$a
Functional analysis.
$3
527706
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030329440
776
0 8
$i
Printed edition:
$z
9783030329464
830
0
$a
Compact Textbooks in Mathematics,
$x
2296-4568
$3
1253517
856
4 0
$u
https://doi.org/10.1007/978-3-030-32945-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入