語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Hybrid Intelligent Technologies in E...
~
SpringerLink (Online service)
Hybrid Intelligent Technologies in Energy Demand Forecasting
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Hybrid Intelligent Technologies in Energy Demand Forecasting/ by Wei-Chiang Hong.
作者:
Hong, Wei-Chiang.
面頁冊數:
XII, 179 p. 60 illus., 51 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Renewable and Green Energy. -
電子資源:
https://doi.org/10.1007/978-3-030-36529-5
ISBN:
9783030365295
Hybrid Intelligent Technologies in Energy Demand Forecasting
Hong, Wei-Chiang.
Hybrid Intelligent Technologies in Energy Demand Forecasting
[electronic resource] /by Wei-Chiang Hong. - 1st ed. 2020. - XII, 179 p. 60 illus., 51 illus. in color.online resource.
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory .
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
ISBN: 9783030365295
Standard No.: 10.1007/978-3-030-36529-5doiSubjects--Topical Terms:
683875
Renewable and Green Energy.
LC Class. No.: HD9502-9502.5
Dewey Class. No.: 333.79
Hybrid Intelligent Technologies in Energy Demand Forecasting
LDR
:02374nam a22004215i 4500
001
1020387
003
DE-He213
005
20200701145711.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030365295
$9
978-3-030-36529-5
024
7
$a
10.1007/978-3-030-36529-5
$2
doi
035
$a
978-3-030-36529-5
050
4
$a
HD9502-9502.5
072
7
$a
TH
$2
bicssc
072
7
$a
BUS070040
$2
bisacsh
072
7
$a
TH
$2
thema
072
7
$a
KNB
$2
thema
082
0 4
$a
333.79
$2
23
082
0 4
$a
338.926
$2
23
100
1
$a
Hong, Wei-Chiang.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
683509
245
1 0
$a
Hybrid Intelligent Technologies in Energy Demand Forecasting
$h
[electronic resource] /
$c
by Wei-Chiang Hong.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XII, 179 p. 60 illus., 51 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- Modeling for Energy Demand Forecasting -- Data Pre-processing Methods -- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination -- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors -- Phase Space Reconstruction and Recurrence Plot Theory .
520
$a
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
650
2 4
$a
Renewable and Green Energy.
$3
683875
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
1113607
650
2 4
$a
Simulation and Modeling.
$3
669249
650
2 4
$a
Computational Intelligence.
$3
768837
650
1 4
$a
Energy Policy, Economics and Management.
$3
784769
650
0
$a
Renewable energy resources.
$3
563364
650
0
$a
Statistical physics.
$3
528048
650
0
$a
Computer simulation.
$3
560190
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Energy and state.
$3
1197930
650
0
$a
Energy policy.
$3
554736
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030365288
776
0 8
$i
Printed edition:
$z
9783030365301
776
0 8
$i
Printed edition:
$z
9783030365318
856
4 0
$u
https://doi.org/10.1007/978-3-030-36529-5
912
$a
ZDB-2-ENE
912
$a
ZDB-2-SXEN
950
$a
Energy (SpringerNature-40367)
950
$a
Energy (R0) (SpringerNature-43717)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入