語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep In-memory Architectures for Mac...
~
Gonugondla, Sujan.
Deep In-memory Architectures for Machine Learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Deep In-memory Architectures for Machine Learning/ by Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag.
作者:
Kang, Mingu.
其他作者:
Shanbhag, Naresh R.
面頁冊數:
X, 174 p. 104 illus., 65 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Processor Architectures. -
電子資源:
https://doi.org/10.1007/978-3-030-35971-3
ISBN:
9783030359713
Deep In-memory Architectures for Machine Learning
Kang, Mingu.
Deep In-memory Architectures for Machine Learning
[electronic resource] /by Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag. - 1st ed. 2020. - X, 174 p. 104 illus., 65 illus. in color.online resource.
Introduction -- The Deep In-memory Architecture (DIMA) -- DIMA Prototype Integrated Circuits -- A Variation-Tolerant DIMA via On-Chip Training -- Mapping Inference Algorithms to DIMA -- PROMISE: A DIMA-based Accelerator -- Future Prospects -- Index.
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware. Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures; Discusses how DIMAs pushes the limits of energy-delay product of decision-making machines via its intrinsic energy-SNR trade-off; Offers readers a unique Shannon-inspired perspective to understand the system-level energy-accuracy trade-off and robustness in such architectures; Illustrates principles and design methods via case studies of actual integrated circuit prototypes with measured results in the laboratory; Presents DIMA's various models to evaluate DIMA's decision-making accuracy, energy, and latency trade-offs with various design parameter.
ISBN: 9783030359713
Standard No.: 10.1007/978-3-030-35971-3doiSubjects--Topical Terms:
669787
Processor Architectures.
LC Class. No.: TK7888.4
Dewey Class. No.: 621.3815
Deep In-memory Architectures for Machine Learning
LDR
:02709nam a22003975i 4500
001
1020909
003
DE-He213
005
20200629172756.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030359713
$9
978-3-030-35971-3
024
7
$a
10.1007/978-3-030-35971-3
$2
doi
035
$a
978-3-030-35971-3
050
4
$a
TK7888.4
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
072
7
$a
TJFC
$2
thema
082
0 4
$a
621.3815
$2
23
100
1
$a
Kang, Mingu.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1316495
245
1 0
$a
Deep In-memory Architectures for Machine Learning
$h
[electronic resource] /
$c
by Mingu Kang, Sujan Gonugondla, Naresh R. Shanbhag.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 174 p. 104 illus., 65 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- The Deep In-memory Architecture (DIMA) -- DIMA Prototype Integrated Circuits -- A Variation-Tolerant DIMA via On-Chip Training -- Mapping Inference Algorithms to DIMA -- PROMISE: A DIMA-based Accelerator -- Future Prospects -- Index.
520
$a
This book describes the recent innovation of deep in-memory architectures for realizing AI systems that operate at the edge of energy-latency-accuracy trade-offs. From first principles to lab prototypes, this book provides a comprehensive view of this emerging topic for both the practicing engineer in industry and the researcher in academia. The book is a journey into the exciting world of AI systems in hardware. Describes deep in-memory architectures for AI systems from first principles, covering both circuit design and architectures; Discusses how DIMAs pushes the limits of energy-delay product of decision-making machines via its intrinsic energy-SNR trade-off; Offers readers a unique Shannon-inspired perspective to understand the system-level energy-accuracy trade-off and robustness in such architectures; Illustrates principles and design methods via case studies of actual integrated circuit prototypes with measured results in the laboratory; Presents DIMA's various models to evaluate DIMA's decision-making accuracy, energy, and latency trade-offs with various design parameter.
650
2 4
$a
Processor Architectures.
$3
669787
650
2 4
$a
Cyber-physical systems, IoT.
$3
1226036
650
1 4
$a
Circuits and Systems.
$3
670901
650
0
$a
Microprocessors.
$3
632481
650
0
$a
Embedded computer systems.
$3
562313
650
0
$a
Internet of things.
$3
1023130
650
0
$a
Computer engineering.
$3
569006
650
0
$a
Electronic circuits.
$3
563332
700
1
$a
Shanbhag, Naresh R.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1316497
700
1
$a
Gonugondla, Sujan.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1316496
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030359706
776
0 8
$i
Printed edition:
$z
9783030359720
776
0 8
$i
Printed edition:
$z
9783030359737
856
4 0
$u
https://doi.org/10.1007/978-3-030-35971-3
912
$a
ZDB-2-ENG
912
$a
ZDB-2-SXE
950
$a
Engineering (SpringerNature-11647)
950
$a
Engineering (R0) (SpringerNature-43712)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入