語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Periods in Quantum Field Theory and ...
~
SpringerLink (Online service)
Periods in Quantum Field Theory and Arithmetic = ICMAT, Madrid, Spain, September 15 – December 19, 2014 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Periods in Quantum Field Theory and Arithmetic/ edited by José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl.
其他題名:
ICMAT, Madrid, Spain, September 15 – December 19, 2014 /
其他作者:
Gangl, Herbert.
面頁冊數:
X, 630 p. 432 illus., 32 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Number Theory. -
電子資源:
https://doi.org/10.1007/978-3-030-37031-2
ISBN:
9783030370312
Periods in Quantum Field Theory and Arithmetic = ICMAT, Madrid, Spain, September 15 – December 19, 2014 /
Periods in Quantum Field Theory and Arithmetic
ICMAT, Madrid, Spain, September 15 – December 19, 2014 /[electronic resource] :edited by José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl. - 1st ed. 2020. - X, 630 p. 432 illus., 32 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,3142194-1009 ;. - Springer Proceedings in Mathematics & Statistics,125.
I. Todorov, Perturbative quantum field theory meets number theory -- E. Panzer, Some open problems on Feynman periods -- S. Stieberger, Periods and Superstring Amplitudes -- O. Schlotterer -- The number theory of superstring amplitudes -- N. Matthes, Overview On Elliptic Multiple Zeta Values -- L. Adams, C. Bogner, S. Weinzierl, The Elliptic Sunrise -- C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory -- H. Bachmann, Multiple Eisenstein series and q-analogues of multiple zeta values -- H. Bachmann, U. Kühn, A dimension conjecture for q-analogues of multiple zeta values -- J. Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras -- J. Singer, q-Analogues of multiple zeta values and their applications in renormalization -- N. M. Nikolov, Vertex algebras and renormalization -- K. Rejzner, Renormalization and periods in perturbative Algebraic Quantum Field Theory -- C. Malvenuto, F. Patras, Symmetril moulds, generic group schemes, resummation of MZVs -- A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure -- F. Chapoton, On some tree-indexed series with one and two parameters -- K. Ebrahimi-Fard, W. Steven Gray, D. Manchon, Evaluating Generating Functions for Periodic Multiple Polylogarithms -- D. Manchon, Arborified multiple zeta values -- L. Foissy, F. Patras, Lie theory for quasi-shuffle bialgebras -- H. Furusho, Galois action on knots II: Proalgebraic string links and knots -- H. Nakamura, Z. Wojtkowiak, On distribution formulas for complex and l-adic polylogarithms -- W. Zudilin, On a family of polynomials related to ζ(2,1)=ζ(3).
This book is the outcome of research initiatives formed during the special "Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
ISBN: 9783030370312
Standard No.: 10.1007/978-3-030-37031-2doiSubjects--Topical Terms:
672023
Number Theory.
LC Class. No.: QA564-609
Dewey Class. No.: 516.35
Periods in Quantum Field Theory and Arithmetic = ICMAT, Madrid, Spain, September 15 – December 19, 2014 /
LDR
:04821nam a22004095i 4500
001
1022216
003
DE-He213
005
20200707024914.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030370312
$9
978-3-030-37031-2
024
7
$a
10.1007/978-3-030-37031-2
$2
doi
035
$a
978-3-030-37031-2
050
4
$a
QA564-609
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
245
1 0
$a
Periods in Quantum Field Theory and Arithmetic
$h
[electronic resource] :
$b
ICMAT, Madrid, Spain, September 15 – December 19, 2014 /
$c
edited by José Ignacio Burgos Gil, Kurusch Ebrahimi-Fard, Herbert Gangl.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 630 p. 432 illus., 32 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
314
505
0
$a
I. Todorov, Perturbative quantum field theory meets number theory -- E. Panzer, Some open problems on Feynman periods -- S. Stieberger, Periods and Superstring Amplitudes -- O. Schlotterer -- The number theory of superstring amplitudes -- N. Matthes, Overview On Elliptic Multiple Zeta Values -- L. Adams, C. Bogner, S. Weinzierl, The Elliptic Sunrise -- C. Vergu, Polylogarithm identities, cluster algebras and the N = 4 supersymmetric theory -- H. Bachmann, Multiple Eisenstein series and q-analogues of multiple zeta values -- H. Bachmann, U. Kühn, A dimension conjecture for q-analogues of multiple zeta values -- J. Zhao, Uniform Approach to Double Shuffle and Duality Relations of Various q-Analogs of Multiple Zeta Values via Rota-Baxter Algebras -- J. Singer, q-Analogues of multiple zeta values and their applications in renormalization -- N. M. Nikolov, Vertex algebras and renormalization -- K. Rejzner, Renormalization and periods in perturbative Algebraic Quantum Field Theory -- C. Malvenuto, F. Patras, Symmetril moulds, generic group schemes, resummation of MZVs -- A. Salerno, L. Schneps, Mould theory and the double shuffle Lie algebra structure -- F. Chapoton, On some tree-indexed series with one and two parameters -- K. Ebrahimi-Fard, W. Steven Gray, D. Manchon, Evaluating Generating Functions for Periodic Multiple Polylogarithms -- D. Manchon, Arborified multiple zeta values -- L. Foissy, F. Patras, Lie theory for quasi-shuffle bialgebras -- H. Furusho, Galois action on knots II: Proalgebraic string links and knots -- H. Nakamura, Z. Wojtkowiak, On distribution formulas for complex and l-adic polylogarithms -- W. Zudilin, On a family of polynomials related to ζ(2,1)=ζ(3).
520
$a
This book is the outcome of research initiatives formed during the special "Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory'' at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades. In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta values using Ecalle's theory of moulds and arborification; a distribution formula for generalised complex and l-adic polylogarithms; Galois action on knots. Given its scope, the book offers a valuable resource for researchers and graduate students interested in topics related to both quantum field theory, in particular, scattering amplitudes, and number theory.
650
2 4
$a
Number Theory.
$3
672023
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
786649
650
1 4
$a
Algebraic Geometry.
$3
670184
650
0
$a
Combinatorics.
$3
669353
650
0
$a
Number theory.
$3
527883
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Algebraic geometry.
$3
1255324
700
1
$a
Gangl, Herbert.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1317915
700
1
$a
Ebrahimi-Fard, Kurusch.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1210550
700
1
$a
Burgos Gil, José Ignacio.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1317914
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030370305
776
0 8
$i
Printed edition:
$z
9783030370329
776
0 8
$i
Printed edition:
$z
9783030370336
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-37031-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入