語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Recent Metaheuristics Algorithms for...
~
SpringerLink (Online service)
Recent Metaheuristics Algorithms for Parameter Identification
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Recent Metaheuristics Algorithms for Parameter Identification/ by Erik Cuevas, Jorge Gálvez, Omar Avalos.
作者:
Cuevas, Erik.
其他作者:
Avalos, Omar.
面頁冊數:
XIV, 297 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-28917-1
ISBN:
9783030289171
Recent Metaheuristics Algorithms for Parameter Identification
Cuevas, Erik.
Recent Metaheuristics Algorithms for Parameter Identification
[electronic resource] /by Erik Cuevas, Jorge Gálvez, Omar Avalos. - 1st ed. 2020. - XIV, 297 p.online resource. - Studies in Computational Intelligence,8541860-949X ;. - Studies in Computational Intelligence,564.
Introduction to optimization and metaheuristic methods -- Optimization techniques in parameters setting for Induction Motor -- An enhanced crow search algorithm applied to energy approaches -- Comparison of solar cells parameters estimation using several optimization algorithms -- Gravitational search algorithm for non-linear system identification using ANFIS-Hammerstein approach -- Fuzzy Logic Based Optimization Algorithm -- Neighborhood Based Optimization Algorithm -- Knowledge-Based Optimization Algorithm.
This book presents new, alternative metaheuristic developments that have proved to be effective in various complex problems to help researchers, lecturers, engineers, and practitioners solve their own optimization problems. It also bridges the gap between recent metaheuristic techniques and interesting identification system methods that benefit from the convenience of metaheuristic schemes by explaining basic ideas of the proposed applications in ways that can be understood by readers new to these fields. As such it is a valuable resource for energy practitioners who are not researchers in metaheuristics. In addition, it offers members of the metaheuristic community insights into how system identification and energy problems can be translated into optimization tasks.
ISBN: 9783030289171
Standard No.: 10.1007/978-3-030-28917-1doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Recent Metaheuristics Algorithms for Parameter Identification
LDR
:02744nam a22004095i 4500
001
1023189
003
DE-He213
005
20200702232401.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030289171
$9
978-3-030-28917-1
024
7
$a
10.1007/978-3-030-28917-1
$2
doi
035
$a
978-3-030-28917-1
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Cuevas, Erik.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1102812
245
1 0
$a
Recent Metaheuristics Algorithms for Parameter Identification
$h
[electronic resource] /
$c
by Erik Cuevas, Jorge Gálvez, Omar Avalos.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XIV, 297 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
854
505
0
$a
Introduction to optimization and metaheuristic methods -- Optimization techniques in parameters setting for Induction Motor -- An enhanced crow search algorithm applied to energy approaches -- Comparison of solar cells parameters estimation using several optimization algorithms -- Gravitational search algorithm for non-linear system identification using ANFIS-Hammerstein approach -- Fuzzy Logic Based Optimization Algorithm -- Neighborhood Based Optimization Algorithm -- Knowledge-Based Optimization Algorithm.
520
$a
This book presents new, alternative metaheuristic developments that have proved to be effective in various complex problems to help researchers, lecturers, engineers, and practitioners solve their own optimization problems. It also bridges the gap between recent metaheuristic techniques and interesting identification system methods that benefit from the convenience of metaheuristic schemes by explaining basic ideas of the proposed applications in ways that can be understood by readers new to these fields. As such it is a valuable resource for energy practitioners who are not researchers in metaheuristics. In addition, it offers members of the metaheuristic community insights into how system identification and energy problems can be translated into optimization tasks.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Avalos, Omar.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1319070
700
1
$a
Gálvez, Jorge.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1319069
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030289164
776
0 8
$i
Printed edition:
$z
9783030289188
776
0 8
$i
Printed edition:
$z
9783030289195
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-28917-1
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入