語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Planar Maps, Random Walks and Circle...
~
Nachmias, Asaf.
Planar Maps, Random Walks and Circle Packing = École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Planar Maps, Random Walks and Circle Packing/ by Asaf Nachmias.
其他題名:
École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /
作者:
Nachmias, Asaf.
面頁冊數:
XII, 120 p. 36 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematical Physics. -
電子資源:
https://doi.org/10.1007/978-3-030-27968-4
ISBN:
9783030279684
Planar Maps, Random Walks and Circle Packing = École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /
Nachmias, Asaf.
Planar Maps, Random Walks and Circle Packing
École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /[electronic resource] :by Asaf Nachmias. - 1st ed. 2020. - XII, 120 p. 36 illus., 8 illus. in color.online resource. - École d'Été de Probabilités de Saint-Flour,22430721-5363 ;. - École d'Été de Probabilités de Saint-Flour,2151.
Open Access
This open access book focuses on the interplay between random walks on planar maps and Koebe’s circle packing theorem. Further topics covered include electric networks, the He–Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe’s circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
ISBN: 9783030279684
Standard No.: 10.1007/978-3-030-27968-4doiSubjects--Topical Terms:
786661
Mathematical Physics.
LC Class. No.: QA273.A1-274.9
Dewey Class. No.: 519.2
Planar Maps, Random Walks and Circle Packing = École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /
LDR
:02936nam a22004455i 4500
001
1025499
003
DE-He213
005
20200705113802.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030279684
$9
978-3-030-27968-4
024
7
$a
10.1007/978-3-030-27968-4
$2
doi
035
$a
978-3-030-27968-4
050
4
$a
QA273.A1-274.9
050
4
$a
QA274-274.9
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
100
1
$a
Nachmias, Asaf.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1321755
245
1 0
$a
Planar Maps, Random Walks and Circle Packing
$h
[electronic resource] :
$b
École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /
$c
by Asaf Nachmias.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XII, 120 p. 36 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
École d'Été de Probabilités de Saint-Flour,
$x
0721-5363 ;
$v
2243
506
0
$a
Open Access
520
$a
This open access book focuses on the interplay between random walks on planar maps and Koebe’s circle packing theorem. Further topics covered include electric networks, the He–Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe’s circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
650
2 4
$a
Mathematical Physics.
$3
786661
650
2 4
$a
Discrete Mathematics.
$3
796600
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Geometry.
$3
579899
650
0
$a
Discrete mathematics.
$3
1254302
650
0
$a
Probabilities.
$3
527847
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030279677
776
0 8
$i
Printed edition:
$z
9783030279691
830
0
$a
École d'Été de Probabilités de Saint-Flour,
$x
0721-5363 ;
$v
2151
$3
1256986
856
4 0
$u
https://doi.org/10.1007/978-3-030-27968-4
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
912
$a
ZDB-2-SOB
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入