語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Recent Trends in Learning From Data ...
~
Anguita, Davide.
Recent Trends in Learning From Data = Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Recent Trends in Learning From Data/ edited by Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita.
其他題名:
Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /
其他作者:
Anguita, Davide.
面頁冊數:
VII, 221 p. 81 illus., 55 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Data Engineering. -
電子資源:
https://doi.org/10.1007/978-3-030-43883-8
ISBN:
9783030438838
Recent Trends in Learning From Data = Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /
Recent Trends in Learning From Data
Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /[electronic resource] :edited by Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita. - 1st ed. 2020. - VII, 221 p. 81 illus., 55 illus. in color.online resource. - Studies in Computational Intelligence,8961860-949X ;. - Studies in Computational Intelligence,564.
Introduction: Recent Trends in Learning From Data -- Learned data structures -- Deep Randomized Neural Networks -- Tensor Decompositions and Practical Applications -- Deep learning for graphs -- Limitations of Shallow Networks -- Fairness in Machine Learning -- Online Continual Learning on Sequences.
This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.
ISBN: 9783030438838
Standard No.: 10.1007/978-3-030-43883-8doiSubjects--Topical Terms:
1226308
Data Engineering.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Recent Trends in Learning From Data = Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /
LDR
:02463nam a22004095i 4500
001
1025845
003
DE-He213
005
20200702225146.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030438838
$9
978-3-030-43883-8
024
7
$a
10.1007/978-3-030-43883-8
$2
doi
035
$a
978-3-030-43883-8
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Recent Trends in Learning From Data
$h
[electronic resource] :
$b
Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL2019) /
$c
edited by Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
VII, 221 p. 81 illus., 55 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
896
505
0
$a
Introduction: Recent Trends in Learning From Data -- Learned data structures -- Deep Randomized Neural Networks -- Tensor Decompositions and Practical Applications -- Deep learning for graphs -- Limitations of Shallow Networks -- Fairness in Machine Learning -- Online Continual Learning on Sequences.
520
$a
This book offers a timely snapshot and extensive practical and theoretical insights into the topic of learning from data. Based on the tutorials presented at the INNS Big Data and Deep Learning Conference, INNSBDDL2019, held on April 16-18, 2019, in Sestri Levante, Italy, the respective chapters cover advanced neural networks, deep architectures, and supervised and reinforcement machine learning models. They describe important theoretical concepts, presenting in detail all the necessary mathematical formalizations, and offer essential guidance on their use in current big data research.
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Engineering—Data processing.
$3
1297966
650
0
$a
Machine learning.
$3
561253
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Anguita, Davide.
$e
author.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1285108
700
1
$a
Sperduti, Alessandro.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1312945
700
1
$a
Navarin, Nicolò.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1312944
700
1
$a
Oneto, Luca.
$e
author.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1285106
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030438821
776
0 8
$i
Printed edition:
$z
9783030438845
776
0 8
$i
Printed edition:
$z
9783030438852
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-43883-8
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入