Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Analytical Methods in Statistics = A...
~
Pešta, Michal.
Analytical Methods in Statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Analytical Methods in Statistics/ edited by Matúš Maciak, Michal Pešta, Martin Schindler.
Reminder of title:
AMISTAT, Liberec, Czech Republic, September 2019 /
other author:
Maciak, Matúš.
Description:
X, 156 p. 15 illus., 8 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Statistics . -
Online resource:
https://doi.org/10.1007/978-3-030-48814-7
ISBN:
9783030488147
Analytical Methods in Statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
Analytical Methods in Statistics
AMISTAT, Liberec, Czech Republic, September 2019 /[electronic resource] :edited by Matúš Maciak, Michal Pešta, Martin Schindler. - 1st ed. 2020. - X, 156 p. 15 illus., 8 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,3292194-1009 ;. - Springer Proceedings in Mathematics & Statistics,125.
Preface -- Y. Güney, J. Jurečková and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerová, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pešta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojičić and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerová, J. Kalina and Y. Güney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
ISBN: 9783030488147
Standard No.: 10.1007/978-3-030-48814-7doiSubjects--Topical Terms:
1253516
Statistics .
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Analytical Methods in Statistics = AMISTAT, Liberec, Czech Republic, September 2019 /
LDR
:03276nam a22004095i 4500
001
1026637
003
DE-He213
005
20200719174325.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030488147
$9
978-3-030-48814-7
024
7
$a
10.1007/978-3-030-48814-7
$2
doi
035
$a
978-3-030-48814-7
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
245
1 0
$a
Analytical Methods in Statistics
$h
[electronic resource] :
$b
AMISTAT, Liberec, Czech Republic, September 2019 /
$c
edited by Matúš Maciak, Michal Pešta, Martin Schindler.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 156 p. 15 illus., 8 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
329
505
0
$a
Preface -- Y. Güney, J. Jurečková and O. Arslan, Averaged Autoregression Quantiles in Autoregressive Model -- J. Kalina and P. Vidnerová, Regression Neural Networks with a Highly Robust Loss Function -- H. L. Koul and P. Geng, Weighted Empirical Minimum Distance Estimators in Berkson Measurement Error Regression Models -- M. Maciak, M. Pešta and S. Vitali, Implied Volatility Surface Estimation via Quantile Regularization -- I. Mizera, A remark on the Grenander estimator -- U. Radojičić and K. Nordhausen, Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace -- P. Vidnerová, J. Kalina and Y. Güney, A Comparison of Robust Model Choice Criteria within a Metalearning Study -- S. Zwanzig and R. Ahmad, On Parameter Estimation for High Dimensional Errors-in-Variables Models.
520
$a
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
650
0
$a
Statistics .
$3
1253516
650
0
$a
Probabilities.
$3
527847
650
0
$a
Applied mathematics.
$3
1069907
650
0
$a
Engineering mathematics.
$3
562757
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
2 4
$a
Applications of Mathematics.
$3
669175
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
650
2 4
$a
Applied Statistics.
$3
1205141
700
1
$a
Maciak, Matúš.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1322954
700
1
$a
Pešta, Michal.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1322955
700
1
$a
Schindler, Martin.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1322956
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030488130
776
0 8
$i
Printed edition:
$z
9783030488154
776
0 8
$i
Printed edition:
$z
9783030488161
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-48814-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login