Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Potential Theory on Sierpiński Carpe...
~
Ntalampekos, Dimitrios.
Potential Theory on Sierpiński Carpets = With Applications to Uniformization /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Potential Theory on Sierpiński Carpets/ by Dimitrios Ntalampekos.
Reminder of title:
With Applications to Uniformization /
Author:
Ntalampekos, Dimitrios.
Description:
X, 186 p. 10 illus., 4 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Functions of complex variables. -
Online resource:
https://doi.org/10.1007/978-3-030-50805-0
ISBN:
9783030508050
Potential Theory on Sierpiński Carpets = With Applications to Uniformization /
Ntalampekos, Dimitrios.
Potential Theory on Sierpiński Carpets
With Applications to Uniformization /[electronic resource] :by Dimitrios Ntalampekos. - 1st ed. 2020. - X, 186 p. 10 illus., 4 illus. in color.online resource. - Lecture Notes in Mathematics,22680075-8434 ;. - Lecture Notes in Mathematics,2144.
This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpiński carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpiński carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpiński carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs.
ISBN: 9783030508050
Standard No.: 10.1007/978-3-030-50805-0doiSubjects--Topical Terms:
528649
Functions of complex variables.
LC Class. No.: QA331-355
Dewey Class. No.: 515.9
Potential Theory on Sierpiński Carpets = With Applications to Uniformization /
LDR
:02170nam a22003975i 4500
001
1026762
003
DE-He213
005
20200901151536.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030508050
$9
978-3-030-50805-0
024
7
$a
10.1007/978-3-030-50805-0
$2
doi
035
$a
978-3-030-50805-0
050
4
$a
QA331-355
072
7
$a
PBKD
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKD
$2
thema
082
0 4
$a
515.9
$2
23
100
1
$a
Ntalampekos, Dimitrios.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1323094
245
1 0
$a
Potential Theory on Sierpiński Carpets
$h
[electronic resource] :
$b
With Applications to Uniformization /
$c
by Dimitrios Ntalampekos.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 186 p. 10 illus., 4 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2268
520
$a
This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpiński carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpiński carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpiński carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs.
650
0
$a
Functions of complex variables.
$3
528649
650
0
$a
Potential theory (Mathematics).
$3
1255004
650
0
$a
Functional analysis.
$3
527706
650
0
$a
Measure theory.
$3
527848
650
0
$a
Mathematical analysis.
$3
527926
650
0
$a
Analysis (Mathematics).
$3
1253570
650
1 4
$a
Functions of a Complex Variable.
$3
672126
650
2 4
$a
Potential Theory.
$3
672266
650
2 4
$a
Functional Analysis.
$3
672166
650
2 4
$a
Measure and Integration.
$3
672015
650
2 4
$a
Analysis.
$3
669490
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030508043
776
0 8
$i
Printed edition:
$z
9783030508067
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-030-50805-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login