語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-Objective Optimization using A...
~
SpringerLink (Online service)
Multi-Objective Optimization using Artificial Intelligence Techniques
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multi-Objective Optimization using Artificial Intelligence Techniques/ by Seyedali Mirjalili, Jin Song Dong.
作者:
Mirjalili, Seyedali.
其他作者:
Dong, Jin Song.
面頁冊數:
XI, 58 p. 26 illus., 25 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Operations Research/Decision Theory. -
電子資源:
https://doi.org/10.1007/978-3-030-24835-2
ISBN:
9783030248352
Multi-Objective Optimization using Artificial Intelligence Techniques
Mirjalili, Seyedali.
Multi-Objective Optimization using Artificial Intelligence Techniques
[electronic resource] /by Seyedali Mirjalili, Jin Song Dong. - 1st ed. 2020. - XI, 58 p. 26 illus., 25 illus. in color.online resource. - SpringerBriefs in Computational Intelligence,2625-3704. - SpringerBriefs in Computational Intelligence,.
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
ISBN: 9783030248352
Standard No.: 10.1007/978-3-030-24835-2doiSubjects--Topical Terms:
669176
Operations Research/Decision Theory.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Multi-Objective Optimization using Artificial Intelligence Techniques
LDR
:02192nam a22003855i 4500
001
1026939
003
DE-He213
005
20200706153457.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030248352
$9
978-3-030-24835-2
024
7
$a
10.1007/978-3-030-24835-2
$2
doi
035
$a
978-3-030-24835-2
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Mirjalili, Seyedali.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1310847
245
1 0
$a
Multi-Objective Optimization using Artificial Intelligence Techniques
$h
[electronic resource] /
$c
by Seyedali Mirjalili, Jin Song Dong.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XI, 58 p. 26 illus., 25 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
520
$a
This book focuses on the most well-regarded and recent nature-inspired algorithms capable of solving optimization problems with multiple objectives. Firstly, it provides preliminaries and essential definitions in multi-objective problems and different paradigms to solve them. It then presents an in-depth explanations of the theory, literature review, and applications of several widely-used algorithms, such as Multi-objective Particle Swarm Optimizer, Multi-Objective Genetic Algorithm and Multi-objective GreyWolf Optimizer Due to the simplicity of the techniques and flexibility, readers from any field of study can employ them for solving multi-objective optimization problem. The book provides the source codes for all the proposed algorithms on a dedicated webpage.
650
2 4
$a
Operations Research/Decision Theory.
$3
669176
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Decision making.
$3
528319
650
0
$a
Operations research.
$3
573517
650
0
$a
Machine learning.
$3
561253
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Dong, Jin Song.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1266396
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030248345
776
0 8
$i
Printed edition:
$z
9783030248369
830
0
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
$3
1254760
856
4 0
$u
https://doi.org/10.1007/978-3-030-24835-2
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入