語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Complex Pattern Mining = New Challen...
~
Masciari, Elio.
Complex Pattern Mining = New Challenges, Methods and Applications /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Complex Pattern Mining/ edited by Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras.
其他題名:
New Challenges, Methods and Applications /
其他作者:
Ras, Zbigniew W.
面頁冊數:
X, 250 p. 77 illus., 47 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Pattern Recognition. -
電子資源:
https://doi.org/10.1007/978-3-030-36617-9
ISBN:
9783030366179
Complex Pattern Mining = New Challenges, Methods and Applications /
Complex Pattern Mining
New Challenges, Methods and Applications /[electronic resource] :edited by Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras. - 1st ed. 2020. - X, 250 p. 77 illus., 47 illus. in color.online resource. - Studies in Computational Intelligence,8801860-949X ;. - Studies in Computational Intelligence,564.
Efficient Infrequent Pattern Mining using Negative Itemset Tree -- Hierarchical Adversarial Training for Multi-Domain -- Optimizing C-index via Gradient Boosting in Medical Survival Analysis -- Order-preserving Biclustering Based on FCA and Pattern Structures -- A text-based regression approach to predict bug-fix time -- A Named Entity Recognition Approach for Albanian Using Deep Learning -- A Latitudinal Study on the Use of Sequential and Concurrency Patterns in Deviance Mining -- Efficient Declarative-based Process Mining using an Enhanced Framework -- Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks -- Classification and Clustering of Emotive Microblogs in Albanian: Two User-Oriented Tasks.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
ISBN: 9783030366179
Standard No.: 10.1007/978-3-030-36617-9doiSubjects--Topical Terms:
669796
Pattern Recognition.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Complex Pattern Mining = New Challenges, Methods and Applications /
LDR
:03083nam a22004095i 4500
001
1027709
003
DE-He213
005
20201105191728.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030366179
$9
978-3-030-36617-9
024
7
$a
10.1007/978-3-030-36617-9
$2
doi
035
$a
978-3-030-36617-9
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Complex Pattern Mining
$h
[electronic resource] :
$b
New Challenges, Methods and Applications /
$c
edited by Annalisa Appice, Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, Zbigniew W. Ras.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
X, 250 p. 77 illus., 47 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
880
505
0
$a
Efficient Infrequent Pattern Mining using Negative Itemset Tree -- Hierarchical Adversarial Training for Multi-Domain -- Optimizing C-index via Gradient Boosting in Medical Survival Analysis -- Order-preserving Biclustering Based on FCA and Pattern Structures -- A text-based regression approach to predict bug-fix time -- A Named Entity Recognition Approach for Albanian Using Deep Learning -- A Latitudinal Study on the Use of Sequential and Concurrency Patterns in Deviance Mining -- Efficient Declarative-based Process Mining using an Enhanced Framework -- Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks -- Classification and Clustering of Emotive Microblogs in Albanian: Two User-Oriented Tasks.
520
$a
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Data mining.
$3
528622
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Ras, Zbigniew W.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
792946
700
1
$a
Masciari, Elio.
$e
editor.
$1
https://orcid.org/0000-0002-1778-5321
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255190
700
1
$a
Manco, Giuseppe.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255189
700
1
$a
Loglisci, Corrado.
$e
editor.
$1
https://orcid.org/0000-0001-5790-8368
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1255188
700
1
$a
Ceci, Michelangelo.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1108822
700
1
$a
Appice, Annalisa.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1020043
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030366162
776
0 8
$i
Printed edition:
$z
9783030366186
776
0 8
$i
Printed edition:
$z
9783030366193
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-36617-9
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入