語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
NANO-CHIPS 2030 = On-Chip AI for an ...
~
Murmann, Boris.
NANO-CHIPS 2030 = On-Chip AI for an Efficient Data-Driven World /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
NANO-CHIPS 2030/ edited by Boris Murmann, Bernd Hoefflinger.
其他題名:
On-Chip AI for an Efficient Data-Driven World /
其他作者:
Hoefflinger, Bernd.
面頁冊數:
XXIII, 592 p. 374 illus., 296 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
R & D/Technology Policy. -
電子資源:
https://doi.org/10.1007/978-3-030-18338-7
ISBN:
9783030183387
NANO-CHIPS 2030 = On-Chip AI for an Efficient Data-Driven World /
NANO-CHIPS 2030
On-Chip AI for an Efficient Data-Driven World /[electronic resource] :edited by Boris Murmann, Bernd Hoefflinger. - 1st ed. 2020. - XXIII, 592 p. 374 illus., 296 illus. in color.online resource. - The Frontiers Collection,1612-3018. - The Frontiers Collection,.
New Programs after the End of the Nanometer Roadmap -- Real-World Electronics -- Silicon Complementary MOS (CMOS) Technology in its 7th Decade -- The Future of Ultra-Low-Power SOTBC CMOS -- Energy-Efficient and High-Throughput Digital CMOS -- Update on Monolithic 3D Integration -- Heterogeneous 3D Integration -- 3D High-Speed Memories Enabling the AI Future -- Minimum Nano-Features with EUV Lithography -- Acquisition of Information -- Machine-Learning Inference -- Multi-Sensor, Intelligent Microsystems -- 3D for efficient, Application-Specific Circuits (ASICs and FPGAs) -- Field-Programmable Arrays -- Coarse-Grained Reconfigurable Architectures -- Graphics-Accelerators and –Processors -- 1,000x Improvement of the Processor-Memory Gap -- Supercomputers -- Deep Learning On-Chip -- Digital Neural Networks -- Brain-Inspired Spiking-Neurons Systems -- Energy-Autonomous Chip-Systems -- Wearable and Implanted Chips -- Electronics for the Human Visual System -- Subretinal Implants in their Third Decade -- Update on Perception-Inspired HDR Video -- High-Dynamic-Range and High-Color Gamut Video -- Augmented and Virtual Reality -- Machine-Learning for Robotics - Hardware Requirements for Care Robots -- Prospects of Quantum Computing -- Man-Machine Cooperation and Cognitronics.
In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come. .
ISBN: 9783030183387
Standard No.: 10.1007/978-3-030-18338-7doiSubjects--Topical Terms:
669186
R & D/Technology Policy.
LC Class. No.: QC176.8.N35
Dewey Class. No.: 620.5
NANO-CHIPS 2030 = On-Chip AI for an Efficient Data-Driven World /
LDR
:03613nam a22004215i 4500
001
1028512
003
DE-He213
005
20200702135907.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030183387
$9
978-3-030-18338-7
024
7
$a
10.1007/978-3-030-18338-7
$2
doi
035
$a
978-3-030-18338-7
050
4
$a
QC176.8.N35
050
4
$a
T174.7
072
7
$a
TBN
$2
bicssc
072
7
$a
SCI050000
$2
bisacsh
072
7
$a
TBN
$2
thema
082
0 4
$a
620.5
$2
23
245
1 0
$a
NANO-CHIPS 2030
$h
[electronic resource] :
$b
On-Chip AI for an Efficient Data-Driven World /
$c
edited by Boris Murmann, Bernd Hoefflinger.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XXIII, 592 p. 374 illus., 296 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
The Frontiers Collection,
$x
1612-3018
505
0
$a
New Programs after the End of the Nanometer Roadmap -- Real-World Electronics -- Silicon Complementary MOS (CMOS) Technology in its 7th Decade -- The Future of Ultra-Low-Power SOTBC CMOS -- Energy-Efficient and High-Throughput Digital CMOS -- Update on Monolithic 3D Integration -- Heterogeneous 3D Integration -- 3D High-Speed Memories Enabling the AI Future -- Minimum Nano-Features with EUV Lithography -- Acquisition of Information -- Machine-Learning Inference -- Multi-Sensor, Intelligent Microsystems -- 3D for efficient, Application-Specific Circuits (ASICs and FPGAs) -- Field-Programmable Arrays -- Coarse-Grained Reconfigurable Architectures -- Graphics-Accelerators and –Processors -- 1,000x Improvement of the Processor-Memory Gap -- Supercomputers -- Deep Learning On-Chip -- Digital Neural Networks -- Brain-Inspired Spiking-Neurons Systems -- Energy-Autonomous Chip-Systems -- Wearable and Implanted Chips -- Electronics for the Human Visual System -- Subretinal Implants in their Third Decade -- Update on Perception-Inspired HDR Video -- High-Dynamic-Range and High-Color Gamut Video -- Augmented and Virtual Reality -- Machine-Learning for Robotics - Hardware Requirements for Care Robots -- Prospects of Quantum Computing -- Man-Machine Cooperation and Cognitronics.
520
$a
In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come. .
650
2 4
$a
R & D/Technology Policy.
$3
669186
650
2 4
$a
Electronics and Microelectronics, Instrumentation.
$3
670219
650
1 4
$a
Nanoscale Science and Technology.
$3
783795
650
0
$a
Economic policy.
$3
555567
650
0
$a
Semiconductors.
$3
578843
650
0
$a
Nanotechnology.
$3
557660
650
0
$a
Microelectronics.
$3
554956
650
0
$a
Electronics.
$3
596389
650
0
$a
Nanostructures.
$3
561754
650
0
$a
Nanoscience.
$3
632473
650
0
$a
Nanoscale science.
$3
1253587
700
1
$a
Hoefflinger, Bernd.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
889481
700
1
$a
Murmann, Boris.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
889282
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030183370
776
0 8
$i
Printed edition:
$z
9783030183394
776
0 8
$i
Printed edition:
$z
9783030183400
830
0
$a
The Frontiers Collection,
$x
1612-3018
$3
1254880
856
4 0
$u
https://doi.org/10.1007/978-3-030-18338-7
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入