語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Medical Image Computing and Computer...
~
SpringerLink (Online service)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 = 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020/ edited by Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz.
其他題名:
23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /
其他作者:
Joskowicz, Leo.
面頁冊數:
XXXVII, 819 p. 33 illus., 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational Biology/Bioinformatics. -
電子資源:
https://doi.org/10.1007/978-3-030-59725-2
ISBN:
9783030597252
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 = 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /[electronic resource] :edited by Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz. - 1st ed. 2020. - XXXVII, 819 p. 33 illus., 1 illus. in color.online resource. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;12266. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;9219.
Angiography and Vessel Analysis -- Lightweight Double Attention-fused Networks for Intraoperative Stent Segmentation -- TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling -- Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction -- Branch-aware Double DQN for Centerline Extraction in Coronary CT Angiography -- Automatic CAD-RADS Scoring from CCTA Scans using Deep Learning -- Higher-Order Flux with Spherical Harmonics Transform for Vascular Analysis -- Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network -- Automated Intracranial Artery Labeling using a Graph Neural Network and Hierarchical Refinement -- Time matters: Handling spatio-temporal perfusion information for automated TICI scoring -- ID-Fit: Intra-saccular Device adjustment for personalized cerebral aneurysm treatment -- JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation -- Classification of Retinal Vessels into Artery-Vein in OCT Angiography Guided by Fundus Images -- Vascular surface segmentation for intracranial aneurysm isolation and quantification -- Breast Imaging -- Deep Doubly Supervised Transfer Network for Diagnosis of Breast Cancer with Imbalanced Ultrasound Imaging Modalities -- 2D X-ray mammography and 3D breast MRI registration -- A Second-order Subregion Pooling Network for Breast Ultrasound Lesion Segmentation -- Multi-Scale Gradational-Order Fusion Framework for Breast lesions Classification Using Ultrasound images -- Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D Detection Network -- Auto-weighting for Breast Cancer Classification in Multimodal Ultrasound -- MommiNet: Mammographic Multi-View Mass Identification Networks -- Multi-Site Evaluation of a Study-Level Classifier for Mammography using Deep Learning -- The case of missed cancers: Applying AI as a radiologist’s safety net -- Decoupling Inherent Risk and Early Cancer Signs in Image-based Breast Cancer Risk Models -- Multi-task learning for detection and classification of cancer in screening mammography -- Colonoscopy -- Adaptive Context Selection for Polyp Segmentation -- PraNet: Parallel Reverse Attention Network for Polyp Segmentation -- Few-Shot Anomaly Detection for Polyp Frames from Colonoscopy -- PolypSeg: an Efficient Context-aware Network for Polyp Segmentation from Colonoscopy Videos -- Endoscopic polyp segmentation using a hybrid 2D/3D CNN -- Dermatology -- A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images -- Fairness of Classifiers Across Skin Tones in Dermatology -- Alleviating the Incompatibility between Cross Entropy Loss and Episode Training for Few-shot Skin Disease Classification -- Clinical-Inspired Network for Skin Lesion Recognition -- Multi-class Skin Lesion Segmentation for Cutaneous T-cell Lymphomas on High-Resolution Clinical Images -- Fetal Imaging -- Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets -- Data-Driven Multi-Contrast Spectral Microstructure Imaging with InSpect -- Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency -- Enhanced detection of fetal pose in 3D MRI by Deep Reinforcement Learning with physical structure priors on anatomy -- Automatic angle of progress measurement of intrapartum transperineal ultrasound image with deep learning -- Joint Image Quality Assessment and Brain Extraction of Fetal MRI using Deep Learning -- Heart and Lung Imaging -- Accelerated 4D Respiratory Motion-resolved Cardiac MRI with a Model-based Variational Network -- Motion Pyramid Networks for Accurate and Efficient Cardiac Motion Estimation -- ICA-UNet: ICA Inspired Statistical UNet for Real-time 3D Cardiac Cine MRI Segmentation -- A Bottom-up Approach for Real-time Mitral Valve Annulus Modeling on 3D Echo Images -- A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography -- Joint data imputation and mechanistic modelling for simulating heart-brain interactions in incomplete datasets -- Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction -- Hierarchical Classification of Pulmonary Lesions: A Large-Scale Radio-Pathomics Study -- Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules -- Multi-stream Progressive Up-sampling Network for Dense CT Image Reconstruction -- Abnormality Detection in Chest X-ray Images Using Uncertainty Prediction Autoencoders -- Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification -- CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans -- Interpretable Identification of Interstitial Lung Diseases (ILD) Associated Findings from CT -- Learning with Sure Data for Nodule-Level Lung Cancer Prediction -- Cascaded Robust Learning at Imperfect Labels for Chest X-ray Segmentation -- Class-Aware Multi-Window Adversarial Lung Nodule Synthesis Conditioned on Semantic Features -- Nodule2vec: a 3D Deep Learning System for Pulmonary Nodule Retrieval Using Semantic Representation -- Deep Active Learning for Effective Pulmonary Nodule Detection -- Musculoskeletal Imaging -- Towards Robust Bone Age Assessment: Rethinking Label Noise and Ambiguity -- Improve bone age assessment by learning from anatomical local regions -- An Analysis by Synthesis Method that Allows Accurate Spatial Modeling of Thickness of Cortical Bone from Clinical QCT -- Segmentation of Paraspinal Muscles at Varied Lumbar Spinal Levels by Explicit Saliency-Aware Learning -- Manifold Ordinal-Mixup for Ordered Classes inTW3-based Bone Age Assessment -- Contour-based Bone Axis Detection for X-Ray Guided Surgery on the Knee -- Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks -- Discriminative dictionary-embedded network for comprehensive vertebrae tumor diagnosis -- Multi-vertebrae segmentation from arbitrary spine MR images under global view -- A Convolutional Approach to Vertebrae Identification in Whole Spine MRI -- Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification -- Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture Detection -- 3D Convolutional Sequence to Sequence Model for Vertebral Compression Fractures Identification in CT -- SIMBA: Specific Identity Markers for Bone Age Assessment -- Doctor Imitator: A Graph-based Bone Age Assessment Framework Using Hand Radiographs -- Inferring the 3D Standing Spine Posture from 2D Radiographs -- Generative Modelling of 3D in-silico Spongiosa with Controllable Micro-Structural Parameters -- GAN-based Realistic Bone Ultrasound Image and Label Synthesis for Improved Segmentation -- Robust Bone Shadow Segmentation from 2D Ultrasound Through Task Decomposition.
The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks Part III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis Part IV: segmentation; shape models and landmark detection Part V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology Part VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imaging Part VI: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography.
ISBN: 9783030597252
Standard No.: 10.1007/978-3-030-59725-2doiSubjects--Topical Terms:
677363
Computational Biology/Bioinformatics.
LC Class. No.: TA1630-1650
Dewey Class. No.: 006.6
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 = 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /
LDR
:10049nam a22004335i 4500
001
1030042
003
DE-He213
005
20210304103635.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030597252
$9
978-3-030-59725-2
024
7
$a
10.1007/978-3-030-59725-2
$2
doi
035
$a
978-3-030-59725-2
050
4
$a
TA1630-1650
072
7
$a
UYT
$2
bicssc
072
7
$a
COM012000
$2
bisacsh
072
7
$a
UYT
$2
thema
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
082
0 4
$a
006.37
$2
23
245
1 0
$a
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
$h
[electronic resource] :
$b
23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VI /
$c
edited by Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XXXVII, 819 p. 33 illus., 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
12266
505
0
$a
Angiography and Vessel Analysis -- Lightweight Double Attention-fused Networks for Intraoperative Stent Segmentation -- TopNet: Topology Preserving Metric Learning for Vessel Tree Reconstruction and Labelling -- Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction -- Branch-aware Double DQN for Centerline Extraction in Coronary CT Angiography -- Automatic CAD-RADS Scoring from CCTA Scans using Deep Learning -- Higher-Order Flux with Spherical Harmonics Transform for Vascular Analysis -- Cerebrovascular Segmentation in MRA via Reverse Edge Attention Network -- Automated Intracranial Artery Labeling using a Graph Neural Network and Hierarchical Refinement -- Time matters: Handling spatio-temporal perfusion information for automated TICI scoring -- ID-Fit: Intra-saccular Device adjustment for personalized cerebral aneurysm treatment -- JointVesselNet: Joint Volume-Projection Convolutional Embedding Networks for 3D Cerebrovascular Segmentation -- Classification of Retinal Vessels into Artery-Vein in OCT Angiography Guided by Fundus Images -- Vascular surface segmentation for intracranial aneurysm isolation and quantification -- Breast Imaging -- Deep Doubly Supervised Transfer Network for Diagnosis of Breast Cancer with Imbalanced Ultrasound Imaging Modalities -- 2D X-ray mammography and 3D breast MRI registration -- A Second-order Subregion Pooling Network for Breast Ultrasound Lesion Segmentation -- Multi-Scale Gradational-Order Fusion Framework for Breast lesions Classification Using Ultrasound images -- Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D Detection Network -- Auto-weighting for Breast Cancer Classification in Multimodal Ultrasound -- MommiNet: Mammographic Multi-View Mass Identification Networks -- Multi-Site Evaluation of a Study-Level Classifier for Mammography using Deep Learning -- The case of missed cancers: Applying AI as a radiologist’s safety net -- Decoupling Inherent Risk and Early Cancer Signs in Image-based Breast Cancer Risk Models -- Multi-task learning for detection and classification of cancer in screening mammography -- Colonoscopy -- Adaptive Context Selection for Polyp Segmentation -- PraNet: Parallel Reverse Attention Network for Polyp Segmentation -- Few-Shot Anomaly Detection for Polyp Frames from Colonoscopy -- PolypSeg: an Efficient Context-aware Network for Polyp Segmentation from Colonoscopy Videos -- Endoscopic polyp segmentation using a hybrid 2D/3D CNN -- Dermatology -- A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images -- Fairness of Classifiers Across Skin Tones in Dermatology -- Alleviating the Incompatibility between Cross Entropy Loss and Episode Training for Few-shot Skin Disease Classification -- Clinical-Inspired Network for Skin Lesion Recognition -- Multi-class Skin Lesion Segmentation for Cutaneous T-cell Lymphomas on High-Resolution Clinical Images -- Fetal Imaging -- Deep learning automatic fetal structures segmentation in MRI scans with few annotated datasets -- Data-Driven Multi-Contrast Spectral Microstructure Imaging with InSpect -- Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency -- Enhanced detection of fetal pose in 3D MRI by Deep Reinforcement Learning with physical structure priors on anatomy -- Automatic angle of progress measurement of intrapartum transperineal ultrasound image with deep learning -- Joint Image Quality Assessment and Brain Extraction of Fetal MRI using Deep Learning -- Heart and Lung Imaging -- Accelerated 4D Respiratory Motion-resolved Cardiac MRI with a Model-based Variational Network -- Motion Pyramid Networks for Accurate and Efficient Cardiac Motion Estimation -- ICA-UNet: ICA Inspired Statistical UNet for Real-time 3D Cardiac Cine MRI Segmentation -- A Bottom-up Approach for Real-time Mitral Valve Annulus Modeling on 3D Echo Images -- A Semi-supervised Joint Network for Simultaneous Left Ventricular Motion Tracking and Segmentation in 4D Echocardiography -- Joint data imputation and mechanistic modelling for simulating heart-brain interactions in incomplete datasets -- Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction -- Hierarchical Classification of Pulmonary Lesions: A Large-Scale Radio-Pathomics Study -- Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules -- Multi-stream Progressive Up-sampling Network for Dense CT Image Reconstruction -- Abnormality Detection in Chest X-ray Images Using Uncertainty Prediction Autoencoders -- Region Proposals for Saliency Map Refinement for Weakly-supervised Disease Localisation and Classification -- CPM-Net: A 3D Center-Points Matching Network for Pulmonary Nodule Detection in CT Scans -- Interpretable Identification of Interstitial Lung Diseases (ILD) Associated Findings from CT -- Learning with Sure Data for Nodule-Level Lung Cancer Prediction -- Cascaded Robust Learning at Imperfect Labels for Chest X-ray Segmentation -- Class-Aware Multi-Window Adversarial Lung Nodule Synthesis Conditioned on Semantic Features -- Nodule2vec: a 3D Deep Learning System for Pulmonary Nodule Retrieval Using Semantic Representation -- Deep Active Learning for Effective Pulmonary Nodule Detection -- Musculoskeletal Imaging -- Towards Robust Bone Age Assessment: Rethinking Label Noise and Ambiguity -- Improve bone age assessment by learning from anatomical local regions -- An Analysis by Synthesis Method that Allows Accurate Spatial Modeling of Thickness of Cortical Bone from Clinical QCT -- Segmentation of Paraspinal Muscles at Varied Lumbar Spinal Levels by Explicit Saliency-Aware Learning -- Manifold Ordinal-Mixup for Ordered Classes inTW3-based Bone Age Assessment -- Contour-based Bone Axis Detection for X-Ray Guided Surgery on the Knee -- Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks -- Discriminative dictionary-embedded network for comprehensive vertebrae tumor diagnosis -- Multi-vertebrae segmentation from arbitrary spine MR images under global view -- A Convolutional Approach to Vertebrae Identification in Whole Spine MRI -- Keypoints Localization for Joint Vertebra Detection and Fracture Severity Quantification -- Grading Loss: A Fracture Grade-based Metric Loss for Vertebral Fracture Detection -- 3D Convolutional Sequence to Sequence Model for Vertebral Compression Fractures Identification in CT -- SIMBA: Specific Identity Markers for Bone Age Assessment -- Doctor Imitator: A Graph-based Bone Age Assessment Framework Using Hand Radiographs -- Inferring the 3D Standing Spine Posture from 2D Radiographs -- Generative Modelling of 3D in-silico Spongiosa with Controllable Micro-Structural Parameters -- GAN-based Realistic Bone Ultrasound Image and Label Synthesis for Improved Segmentation -- Robust Bone Shadow Segmentation from 2D Ultrasound Through Task Decomposition.
520
$a
The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks Part III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis Part IV: segmentation; shape models and landmark detection Part V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology Part VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imaging Part VI: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography.
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Pattern Recognition.
$3
669796
650
2 4
$a
Computers and Education.
$3
669806
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
669920
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Image Processing and Computer Vision.
$3
670819
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Pattern recognition.
$3
1253525
650
0
$a
Education—Data processing.
$3
1253610
650
0
$a
Application software.
$3
528147
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Optical data processing.
$3
639187
700
1
$a
Joskowicz, Leo.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1267868
700
1
$a
Racoceanu, Daniel.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
890031
700
1
$a
Zhou, S. Kevin.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
598558
700
1
$a
Zuluaga, Maria A.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1250329
700
1
$a
Mateus, Diana.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1273639
700
1
$a
Stoyanov, Danail.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1209224
700
1
$a
Abolmaesumi, Purang.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
884580
700
1
$a
Martel, Anne L.
$e
editor.
$1
https://orcid.org/0000-0003-1375-5501
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1326812
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030597245
776
0 8
$i
Printed edition:
$z
9783030597269
830
0
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
9219
$3
1253644
856
4 0
$u
https://doi.org/10.1007/978-3-030-59725-2
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
912
$a
ZDB-2-LNC
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入