語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Enabling Process Management for Loos...
~
SpringerLink (Online service)
Enabling Process Management for Loosely Framed Knowledge-intensive Processes
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Enabling Process Management for Loosely Framed Knowledge-intensive Processes/ by Steven Mertens.
作者:
Mertens, Steven.
面頁冊數:
XI, 202 p. 51 illus., 21 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Health Informatics. -
電子資源:
https://doi.org/10.1007/978-3-030-66193-9
ISBN:
9783030661939
Enabling Process Management for Loosely Framed Knowledge-intensive Processes
Mertens, Steven.
Enabling Process Management for Loosely Framed Knowledge-intensive Processes
[electronic resource] /by Steven Mertens. - 1st ed. 2020. - XI, 202 p. 51 illus., 21 illus. in color.online resource. - Lecture Notes in Business Information Processing,4091865-1348 ;. - Lecture Notes in Business Information Processing,206.
1 Introduction -- 1.1 Terminology and Research Context -- 1.2 Problem Statement -- 1.3 Research Objectives -- 1.4 Research Methodology -- 1.5 Dissertation Structure -- 2 Towards a Decision-aware Declarative Process Modeling Language for Knowledge-intensive Processes -- 2.1 Introduction -- 2.2 Related Work -- 2.3 Research Methodology -- 2.4 Language Requirements -- 2.5 Designing the Perspectives -- 2.5.1 The arm fracture case -- 2.5.2 Declare as a foundation -- 2.5.3 Extending the functional and control-flow perspectives -- 2.5.4 Adding a notion of time-awareness to the constraint templates -- 2.5.5 Supporting the data perspective -- 2.5.6 Supporting the resource perspective -- 2.6 Integrating the Perspectives -- 2.6.1 Integrating the data perspective -- 2.6.2 Integrating the resource perspective -- 2.6.3 DeciClare -- 2.7 Evaluation -- 2.7.1 The evaluation set-up -- 2.7.2 Evaluating the perceived semantic quality -- 2.7.3 Evaluating the pragmatic quality -- 2.7.4 Evaluating the language-domain appropriateness -- 2.8 Positioning of DeciClare in the Research Domain -- 2.9 Conclusion -- 2.10 Limitations and Future Work -- 3 Discovering Loosely Framed Knowledge-intensive Processes using DeciClareMiner -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Modeling Healthcare Processes: DeciClare -- 3.4 Research Methodology -- 3.5 Discovering Healthcare Process Models: DeciClareMiner -- 3.5.1 Phase 1: Mining decision-independent rules -- 3.5.1.1 Leveraged property -- 3.5.1.2 The iteration principle: optimizations -- 3.5.1.3 The join criteria -- 3.5.1.4 The join step -- 3.5.1.5 Running example -- 3.5.1.6 The output of the first phase -- 3.5.2 Phase 2: Mining decision-dependent rules -- 3.5.2.1 Fitness Function -- 3.5.2.2 Optimization -- 3.5.2.3 Running example -- 3.5.2.4 The output after the second phase -- 3.6 Evaluation -- 3.6.1 Dataset -- 3.6.2 Benchmark creation -- 3.6.3 Results -- 3.6.4 Discussion -- 3.7 Limitations -- 3.8 Conclusions and Directions for Future Research -- 4 Integrated Declarative Process and Decision Discovery of the Emergency Care Process -- 4.1 Introduction -- 4.2 Research Methodology -- 4.3 Discovering the Emergency Care Process with DeciClareMiner -- 4.3.1 Extraction -- 4.3.2 Data Preprocessing -- 4.3.3 Log Preparation -- 4.3.4 Mining a Process and Decision Model -- 4.3.5 Evaluation -- 4.4 Method Application: The Emergency Care Process -- 4.4.1 Extraction -- 4.4.2 Data Preprocessing -- 4.4.3 Log Preparation -- 4.4.4 Mining a Process and Decision Model -- 4.4.5 Evaluation -- 4.4.6 Discussion -- 4.5 Conclusion and Future Research -- 5 Operational Support for Loosely Framed Knowledge-intensive Processes -- 5.1 A Generic Framework for Flexible and Data-Aware Business Process Engines -- 5.1.1 Introduction -- 5.1.2 Research Methodology -- 5.1.3 Problem Statement and Solution Requirements -- 5.1.4 Data-Aware Declarative Process Enactment Framework -- 5.1.5 Demonstration -- 5.1.5.1 Process Definition: DeciClare -- 5.1.5.2 DeciClareEngine -- 5.1.5.3 Related Work -- 5.1.5.4 Conclusion and Future Research -- 5.2 Comparing Strategies to Generate Experience-based Clinical Process Recommendations that Leverage Similarity to Historic Data -- 5.2.1 Introduction -- 5.2.2 Related Work -- 5.2.3 Terminology and Formal Problem Definition -- 5.2.4 Research Methodology -- 5.2.5 Strategies -- 5.2.5.1 Pre-calculated similarity scorers -- 5.2.5.2 Positionless similarity scorers -- 5.2.5.3 Variable-position similarity scorers -- 5.2.5.4 Combinated scorers -- 5.2.6 Experiments -- 5.2.6.1 Experiment 1: comparing the general predictive power over different data sets -- 5.2.6.1.1 Experimental setup -- 5.2.6.1.2 Computational results -- 5.2.6.2 Experiment 2: the relation between predictive power and the size of H -- 5.2.6.2.1 Experimental setup -- 5.2.6.2.2 Computational results -- 5.2.7 Discussion -- 5.2.8 Conclusion and Future Research -- 6 Conclusion and Future Research -- 6.1 Research Results -- 6.2 Research Relevance and Implications -- 6.2.1 Implications for researchers -- 6.2.2 Implications for process stakeholders -- 6.2.3 Generalizability to other domains -- 6.3 Research Limitations and Future Research -- Appendix A: Arm fracture case description (based on literature) -- Appendix B: Original textual DeciClare model of arm fracture case -- Available resources -- Available activities -- Available data elements -- Resource constraints -- Control-flow constraints -- Appendix C: Semi-structured interview protocol (translated from Dutch) -- Appendix D: Final textual DeciClare model of arm fracture case -- Defined Elements -- Constraints -- Appendix E: The join step of DeciClareMiner (decision-independent) -- Appendix F: The DeciClare templates supported by DeciClareEngine -- References.
This book is a revised version of the PhD dissertation written by the author at the Department of Business Informatics and Operations Management at Ghent University in Belgium. It addresses shortcomings in Business Process Management concerning loosely framed knowledge-intensive processes, which are characterized by their numerous valid process variants and their reliance on knowledge workers to apply their knowledge to decide on a suitable process variant that fits the context of a specific process execution. The goal was to lay the foundation for a process-aware business process management (IT-)system to support such processes. Several proof-of-concept implementations have been made for the core components and were evaluated in the domain of the healthcare. Starting from an artificial, but realistic, case about patients that arrive in the emergency room with suspected arm fractures and later progressing to a case study of the diagnosis and treatment of patients in the emergency department of a real hospital, using data from their patient files. In 2020, the PhD dissertation won the “CAiSE PhD award”, granted to outstanding PhD theses in the field of Information Systems Engineering.
ISBN: 9783030661939
Standard No.: 10.1007/978-3-030-66193-9doiSubjects--Topical Terms:
593963
Health Informatics.
LC Class. No.: HD30.2
Dewey Class. No.: 658.4038
Enabling Process Management for Loosely Framed Knowledge-intensive Processes
LDR
:07388nam a22004095i 4500
001
1031245
003
DE-He213
005
20210123072432.0
007
cr nn 008mamaa
008
210318s2020 gw | s |||| 0|eng d
020
$a
9783030661939
$9
978-3-030-66193-9
024
7
$a
10.1007/978-3-030-66193-9
$2
doi
035
$a
978-3-030-66193-9
050
4
$a
HD30.2
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS083000
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
658.4038
$2
23
100
1
$a
Mertens, Steven.
$e
author.
$0
(orcid)0000-0001-8013-8322
$1
https://orcid.org/0000-0001-8013-8322
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1328349
245
1 0
$a
Enabling Process Management for Loosely Framed Knowledge-intensive Processes
$h
[electronic resource] /
$c
by Steven Mertens.
250
$a
1st ed. 2020.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
XI, 202 p. 51 illus., 21 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Business Information Processing,
$x
1865-1348 ;
$v
409
505
0
$a
1 Introduction -- 1.1 Terminology and Research Context -- 1.2 Problem Statement -- 1.3 Research Objectives -- 1.4 Research Methodology -- 1.5 Dissertation Structure -- 2 Towards a Decision-aware Declarative Process Modeling Language for Knowledge-intensive Processes -- 2.1 Introduction -- 2.2 Related Work -- 2.3 Research Methodology -- 2.4 Language Requirements -- 2.5 Designing the Perspectives -- 2.5.1 The arm fracture case -- 2.5.2 Declare as a foundation -- 2.5.3 Extending the functional and control-flow perspectives -- 2.5.4 Adding a notion of time-awareness to the constraint templates -- 2.5.5 Supporting the data perspective -- 2.5.6 Supporting the resource perspective -- 2.6 Integrating the Perspectives -- 2.6.1 Integrating the data perspective -- 2.6.2 Integrating the resource perspective -- 2.6.3 DeciClare -- 2.7 Evaluation -- 2.7.1 The evaluation set-up -- 2.7.2 Evaluating the perceived semantic quality -- 2.7.3 Evaluating the pragmatic quality -- 2.7.4 Evaluating the language-domain appropriateness -- 2.8 Positioning of DeciClare in the Research Domain -- 2.9 Conclusion -- 2.10 Limitations and Future Work -- 3 Discovering Loosely Framed Knowledge-intensive Processes using DeciClareMiner -- 3.1 Introduction -- 3.2 Related Work -- 3.3 Modeling Healthcare Processes: DeciClare -- 3.4 Research Methodology -- 3.5 Discovering Healthcare Process Models: DeciClareMiner -- 3.5.1 Phase 1: Mining decision-independent rules -- 3.5.1.1 Leveraged property -- 3.5.1.2 The iteration principle: optimizations -- 3.5.1.3 The join criteria -- 3.5.1.4 The join step -- 3.5.1.5 Running example -- 3.5.1.6 The output of the first phase -- 3.5.2 Phase 2: Mining decision-dependent rules -- 3.5.2.1 Fitness Function -- 3.5.2.2 Optimization -- 3.5.2.3 Running example -- 3.5.2.4 The output after the second phase -- 3.6 Evaluation -- 3.6.1 Dataset -- 3.6.2 Benchmark creation -- 3.6.3 Results -- 3.6.4 Discussion -- 3.7 Limitations -- 3.8 Conclusions and Directions for Future Research -- 4 Integrated Declarative Process and Decision Discovery of the Emergency Care Process -- 4.1 Introduction -- 4.2 Research Methodology -- 4.3 Discovering the Emergency Care Process with DeciClareMiner -- 4.3.1 Extraction -- 4.3.2 Data Preprocessing -- 4.3.3 Log Preparation -- 4.3.4 Mining a Process and Decision Model -- 4.3.5 Evaluation -- 4.4 Method Application: The Emergency Care Process -- 4.4.1 Extraction -- 4.4.2 Data Preprocessing -- 4.4.3 Log Preparation -- 4.4.4 Mining a Process and Decision Model -- 4.4.5 Evaluation -- 4.4.6 Discussion -- 4.5 Conclusion and Future Research -- 5 Operational Support for Loosely Framed Knowledge-intensive Processes -- 5.1 A Generic Framework for Flexible and Data-Aware Business Process Engines -- 5.1.1 Introduction -- 5.1.2 Research Methodology -- 5.1.3 Problem Statement and Solution Requirements -- 5.1.4 Data-Aware Declarative Process Enactment Framework -- 5.1.5 Demonstration -- 5.1.5.1 Process Definition: DeciClare -- 5.1.5.2 DeciClareEngine -- 5.1.5.3 Related Work -- 5.1.5.4 Conclusion and Future Research -- 5.2 Comparing Strategies to Generate Experience-based Clinical Process Recommendations that Leverage Similarity to Historic Data -- 5.2.1 Introduction -- 5.2.2 Related Work -- 5.2.3 Terminology and Formal Problem Definition -- 5.2.4 Research Methodology -- 5.2.5 Strategies -- 5.2.5.1 Pre-calculated similarity scorers -- 5.2.5.2 Positionless similarity scorers -- 5.2.5.3 Variable-position similarity scorers -- 5.2.5.4 Combinated scorers -- 5.2.6 Experiments -- 5.2.6.1 Experiment 1: comparing the general predictive power over different data sets -- 5.2.6.1.1 Experimental setup -- 5.2.6.1.2 Computational results -- 5.2.6.2 Experiment 2: the relation between predictive power and the size of H -- 5.2.6.2.1 Experimental setup -- 5.2.6.2.2 Computational results -- 5.2.7 Discussion -- 5.2.8 Conclusion and Future Research -- 6 Conclusion and Future Research -- 6.1 Research Results -- 6.2 Research Relevance and Implications -- 6.2.1 Implications for researchers -- 6.2.2 Implications for process stakeholders -- 6.2.3 Generalizability to other domains -- 6.3 Research Limitations and Future Research -- Appendix A: Arm fracture case description (based on literature) -- Appendix B: Original textual DeciClare model of arm fracture case -- Available resources -- Available activities -- Available data elements -- Resource constraints -- Control-flow constraints -- Appendix C: Semi-structured interview protocol (translated from Dutch) -- Appendix D: Final textual DeciClare model of arm fracture case -- Defined Elements -- Constraints -- Appendix E: The join step of DeciClareMiner (decision-independent) -- Appendix F: The DeciClare templates supported by DeciClareEngine -- References.
520
$a
This book is a revised version of the PhD dissertation written by the author at the Department of Business Informatics and Operations Management at Ghent University in Belgium. It addresses shortcomings in Business Process Management concerning loosely framed knowledge-intensive processes, which are characterized by their numerous valid process variants and their reliance on knowledge workers to apply their knowledge to decide on a suitable process variant that fits the context of a specific process execution. The goal was to lay the foundation for a process-aware business process management (IT-)system to support such processes. Several proof-of-concept implementations have been made for the core components and were evaluated in the domain of the healthcare. Starting from an artificial, but realistic, case about patients that arrive in the emergency room with suspected arm fractures and later progressing to a case study of the diagnosis and treatment of patients in the emergency department of a real hospital, using data from their patient files. In 2020, the PhD dissertation won the “CAiSE PhD award”, granted to outstanding PhD theses in the field of Information Systems Engineering.
650
2 4
$a
Health Informatics.
$3
593963
650
2 4
$a
Computer Applications.
$3
669785
650
1 4
$a
Business Process Management.
$3
1066351
650
0
$a
Health informatics.
$3
1064466
650
0
$a
Application software.
$3
528147
650
0
$a
Industrial management.
$3
556510
650
0
$a
Management information systems.
$3
561123
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030661922
776
0 8
$i
Printed edition:
$z
9783030661946
830
0
$a
Lecture Notes in Business Information Processing,
$x
1865-1348 ;
$v
206
$3
1253615
856
4 0
$u
https://doi.org/10.1007/978-3-030-66193-9
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
912
$a
ZDB-2-LNB
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入