語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Environmental Monitoring with Unmann...
~
University of Minnesota.
Environmental Monitoring with Unmanned Aerial Vehicles.
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Environmental Monitoring with Unmanned Aerial Vehicles./
作者:
Stefas, Nikolaos.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
146 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Contained By:
Dissertations Abstracts International82-03B.
標題:
Aerospace engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28002430
ISBN:
9798664763379
Environmental Monitoring with Unmanned Aerial Vehicles.
Stefas, Nikolaos.
Environmental Monitoring with Unmanned Aerial Vehicles.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 146 p.
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Thesis (Ph.D.)--University of Minnesota, 2020.
This item must not be sold to any third party vendors.
Recent advances in miniaturization of processing units, storage capacity, battery power and sensory equipment have allowed Unmanned Aerial Vehicles (UAVs) to perform environmental monitoring tasks with unprecedented speed and accuracy. Data collection is important for algorithms and systems that try to learn how the physical world works or try to interact with it. The number, variety and quality of the data directly affects the performance of these algorithms. In order to fully realize this vision we need to compliment it with efficient systems that can collect the required data. In this dissertation we develop new robotic solutions for fully automating monitoring and data collection in natural, outdoor environments.First, we study the design of an Unmanned Aerial Vehicle (UAV) for safe tree surface inspection flying at low altitude inside orchard type fields. The objective of this study is threefold. The system needs to collect complete sets of data for different types of data collection sensors. Furthermore, it has to be able to operate successfully under the effects of wind disturbances. Finally, the integrity of the field has to be guaranteed. To achieve this goal, we modify and integrate several methods and technologies including a non-standard distance-velocity Proportional-Integral-Derivative (PID) based controller and real time obstacle map navigation based on occupancy voxels. The resulting system demonstrates successful operation and data collection inside a honeycrisp apple orchard. The demonstration includes multiple tests across several days, under various weather conditions (e.g. sunlight, wind) to ensure consistency and was shown to be fully functional even during GPS signal loss.Second, we study the problem of high altitude optimal trajectory generation for capturing aerial image footage of known but difficult to see areas (e.g. under trees or structures, reflective surfaces). In this problem we consider the relation between the camera resolution and UAV altitude. We associate each camera image with an inverted cone apexed at the location of the interest. The height of each cone is associated with the desired resolution and the apex angle corresponds to camera field of view. In other words, each cone encodes the set of view points from which a target can be imaged at a desired location. We provide a polynomial time approximation algorithm that produces a close to optimal solution and was evaluated in existing applications. We analyze the performance of our strategy and demonstrate through simulations and field experiments that by exploiting the special structure of the cones we can achieve shorter flight times than previously available solutions. The strategy can be used with any number of cones and split coverage into multiple flights in order to account for limited battery power or storage capacity.Third, we describe a method that can localize and approach a radio signal source at an unknown location with UAVs. We start by fitting a multi-rotor UAV system with a small on-board computer and a directional antenna that can detect the signal source. We then model the area around the signal source based on the antenna radiation field and classify the locations in which we can or cannot obtain reliable directionality measurements (i.e. bearing measurements). The results of this modeling resemble a cone-like region above the signal source inside of which bearing measurements are unreliable. In order to verify that our modeling is realistic, we also collect data with a real UAV system. Using this modeling, we develop a “home-in” strategy that takes advantage of a UAV’s ability to change altitude and exploits the special structure of the modeled conic-like region in order to approach the signal source from above. We analyze the performance of our strategy and demonstrate through simulations and field experiments that by exploiting this structure we can achieve short flight times.In this dissertation we make progress towards the creation of robotic sensing solutions that satisfy two important criteria. The first criterion is to provide theoretical guarantees about the performance of the proposed solutions. This is achieved by mathematically proving what the worst case scenario is and using it as an upper bound. The second criterion is to demonstrate the feasibility of the proposed solutions in real world applications. This is achieved by providing practical implementations tested in both simulations and with robotic systems operating in realistic settings.
ISBN: 9798664763379Subjects--Topical Terms:
686400
Aerospace engineering.
Subjects--Index Terms:
Algorithms
Environmental Monitoring with Unmanned Aerial Vehicles.
LDR
:05712nam a2200385 4500
001
1037994
005
20210910100650.5
008
211029s2020 ||||||||||||||||| ||eng d
020
$a
9798664763379
035
$a
(MiAaPQ)AAI28002430
035
$a
AAI28002430
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Stefas, Nikolaos.
$3
1335315
245
1 0
$a
Environmental Monitoring with Unmanned Aerial Vehicles.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
146 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
500
$a
Advisor: Isler, Volkan.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Recent advances in miniaturization of processing units, storage capacity, battery power and sensory equipment have allowed Unmanned Aerial Vehicles (UAVs) to perform environmental monitoring tasks with unprecedented speed and accuracy. Data collection is important for algorithms and systems that try to learn how the physical world works or try to interact with it. The number, variety and quality of the data directly affects the performance of these algorithms. In order to fully realize this vision we need to compliment it with efficient systems that can collect the required data. In this dissertation we develop new robotic solutions for fully automating monitoring and data collection in natural, outdoor environments.First, we study the design of an Unmanned Aerial Vehicle (UAV) for safe tree surface inspection flying at low altitude inside orchard type fields. The objective of this study is threefold. The system needs to collect complete sets of data for different types of data collection sensors. Furthermore, it has to be able to operate successfully under the effects of wind disturbances. Finally, the integrity of the field has to be guaranteed. To achieve this goal, we modify and integrate several methods and technologies including a non-standard distance-velocity Proportional-Integral-Derivative (PID) based controller and real time obstacle map navigation based on occupancy voxels. The resulting system demonstrates successful operation and data collection inside a honeycrisp apple orchard. The demonstration includes multiple tests across several days, under various weather conditions (e.g. sunlight, wind) to ensure consistency and was shown to be fully functional even during GPS signal loss.Second, we study the problem of high altitude optimal trajectory generation for capturing aerial image footage of known but difficult to see areas (e.g. under trees or structures, reflective surfaces). In this problem we consider the relation between the camera resolution and UAV altitude. We associate each camera image with an inverted cone apexed at the location of the interest. The height of each cone is associated with the desired resolution and the apex angle corresponds to camera field of view. In other words, each cone encodes the set of view points from which a target can be imaged at a desired location. We provide a polynomial time approximation algorithm that produces a close to optimal solution and was evaluated in existing applications. We analyze the performance of our strategy and demonstrate through simulations and field experiments that by exploiting the special structure of the cones we can achieve shorter flight times than previously available solutions. The strategy can be used with any number of cones and split coverage into multiple flights in order to account for limited battery power or storage capacity.Third, we describe a method that can localize and approach a radio signal source at an unknown location with UAVs. We start by fitting a multi-rotor UAV system with a small on-board computer and a directional antenna that can detect the signal source. We then model the area around the signal source based on the antenna radiation field and classify the locations in which we can or cannot obtain reliable directionality measurements (i.e. bearing measurements). The results of this modeling resemble a cone-like region above the signal source inside of which bearing measurements are unreliable. In order to verify that our modeling is realistic, we also collect data with a real UAV system. Using this modeling, we develop a “home-in” strategy that takes advantage of a UAV’s ability to change altitude and exploits the special structure of the modeled conic-like region in order to approach the signal source from above. We analyze the performance of our strategy and demonstrate through simulations and field experiments that by exploiting this structure we can achieve short flight times.In this dissertation we make progress towards the creation of robotic sensing solutions that satisfy two important criteria. The first criterion is to provide theoretical guarantees about the performance of the proposed solutions. This is achieved by mathematically proving what the worst case scenario is and using it as an upper bound. The second criterion is to demonstrate the feasibility of the proposed solutions in real world applications. This is achieved by providing practical implementations tested in both simulations and with robotic systems operating in realistic settings.
590
$a
School code: 0130.
650
4
$a
Aerospace engineering.
$3
686400
650
4
$a
Computer science.
$3
573171
650
4
$a
Robotics.
$3
561941
653
$a
Algorithms
653
$a
Applied sciences
653
$a
Environmental-monitoring
653
$a
Motion-planning
653
$a
Robotics
653
$a
Systems
690
$a
0771
690
$a
0984
690
$a
0538
710
2
$a
University of Minnesota.
$b
Computer Science.
$3
1180176
773
0
$t
Dissertations Abstracts International
$g
82-03B.
790
$a
0130
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28002430
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入