語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data mapping for data warehouse design
~
Haq, Qazi Muhammad Rashid Ul,
Data mapping for data warehouse design
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data mapping for data warehouse design/ Qamar Shahbaz Ul Haq.
作者:
Haq, Qazi Muhammad Rashid Ul,
出版者:
Amsterdam :Elsevier, : 2016.,
面頁冊數:
1 online resource.
標題:
COMPUTERS - Databases -
電子資源:
https://www.sciencedirect.com/science/book/9780128051856
ISBN:
9780128053355 (electronic bk.)
Data mapping for data warehouse design
Haq, Qazi Muhammad Rashid Ul,
Data mapping for data warehouse design
[electronic resource] /Qamar Shahbaz Ul Haq. - Amsterdam :Elsevier,2016. - 1 online resource.
Includes bibliographical references.
Front Cover -- Data Mapping for Data Warehouse Design -- Copyright Page -- Dedication -- Contents -- 1 Introduction -- Definition -- 2 Data Mapping Stages -- Mapping from the Source to the Data Warehouse Landing Area -- Mapping fromthe Landing Area to the Staging Database -- Mapping from the Staging Database to the Load Ready or Target Database -- Mapping from Logical Data Model to the Semantic or Access Layer -- 3 Data Mapping Types -- Logical Data Mapping -- Physical Data Mapping -- 4 Data Models -- Definition -- Entity -- Relationship -- Attributes -- Normalized Data Model.
Data mapping in data warehouse lifecycle is the process of creating a link between two distinct data models' (source and target) tables/attributes. It is required at many stages of DW life-cycle to transform data from one state to another; every stage has its own unique requirements and challenges. This book provides basic and advanced knowledge about data mapping/data transformation. It contains real life scenarios that readers face and presents solutions/standard techniques across various domains. --
ISBN: 9780128053355 (electronic bk.)Subjects--Topical Terms:
1343660
COMPUTERS
--DatabasesIndex Terms--Genre/Form:
554714
Electronic books.
LC Class. No.: QA76.9.D37 / H37 2016
Dewey Class. No.: 005.74
Data mapping for data warehouse design
LDR
:04436cam a2200313 a 4500
001
1042941
006
m o d
007
cr cnu---unuuu
008
211216s2016 ne a gob 000 0 eng d
020
$a
9780128053355 (electronic bk.)
020
$a
0128053356 (electronic bk.)
020
$a
9780128051856
020
$a
012805185X
035
$a
(OCoLC)932289266
035
$a
ocn932289266
040
$a
N$T
$b
eng
$c
N$T
$d
IDEBK
$d
N$T
$d
YDXCP
$d
OCLCF
$d
CDX
$d
OPELS
$d
B24X7
$d
STF
$d
DEBSZ
$d
AU@
$d
OCLCQ
$d
D6H
$d
LIV
$d
OCLCQ
$d
U3W
$d
WRM
$d
COO
$d
OCLCQ
$d
LQU
$d
SNM
$d
BRF
041
0
$a
eng
050
4
$a
QA76.9.D37
$b
H37 2016
082
0 4
$a
005.74
$2
23
100
1
$a
Haq, Qazi Muhammad Rashid Ul,
$e
author.
$3
1343659
245
1 0
$a
Data mapping for data warehouse design
$h
[electronic resource] /
$c
Qamar Shahbaz Ul Haq.
260
$a
Amsterdam :
$b
Elsevier,
$c
2016.
300
$a
1 online resource.
504
$a
Includes bibliographical references.
505
0
$a
Front Cover -- Data Mapping for Data Warehouse Design -- Copyright Page -- Dedication -- Contents -- 1 Introduction -- Definition -- 2 Data Mapping Stages -- Mapping from the Source to the Data Warehouse Landing Area -- Mapping fromthe Landing Area to the Staging Database -- Mapping from the Staging Database to the Load Ready or Target Database -- Mapping from Logical Data Model to the Semantic or Access Layer -- 3 Data Mapping Types -- Logical Data Mapping -- Physical Data Mapping -- 4 Data Models -- Definition -- Entity -- Relationship -- Attributes -- Normalized Data Model.
505
8
$a
First Normal Form -- Second Normal Form -- Third Normal Form -- Dimensional Data Model -- Fact -- Dimension -- Measure -- Drill-Down and Roll-Up -- Star Schema -- Fact Tables -- Dimension Tables -- 5 Data Mapper's Strategy and Focus-- Mapper Who? How Does He or She Do It? -- 6 Uniqueness of Attributes and its Importance -- Telecom -- Manufacturing -- Finance -- Uniqueness in Data Warehouse -- 7 Prerequisites of Data Mapping -- Logical Data Model -- Entities and TheirDescription -- Attributes and Their Description -- Primary Key of Entities -- Relationship Between Entities.
505
8
$a
Cardinality of the Relationship -- Change Capture Column of History-Handled Entities -- Physical Data Model -- Source System Data Model -- Source System Table and Attribute Details -- Subject Matter Expert -- Production Quality Data-- 8 Surrogate Keys versus Natural Keys -- Natural Keys -- Surrogate Keys -- 9 Data Mapping Document Format -- Header-Level Rules -- Column-Level Rules -- Major Parts of the Data Mapping Document -- Data Mapping Columns Explained -- ChangeDate -- Subject Area -- Target Table Name -- Target Column Name -- Data Type -- PK -- Nullable -- Source System -- Record ID.
505
8
$a
Source Table Name -- Source Column Name -- Data Type of Source Column -- Transformation Category -- Transformation Rule -- Updated By -- Mapping Priority or Sequence -- 10 Data Analysis Techniques -- Source Data Sample -- Direct Access -- Extraction from a Source -- Data Files -- What to Look For -- High-Level Inter-Source System Relationship -- Intra-Source System Table-Level Analysis -- Column-Level Analysis -- Uniqueness -- Full Row Duplicates -- Primary Key Duplicates -- Multiple Extracts -- Source System Updates -- History Pattern Analysis -- Type 0 -- Type 1 -- Type 2 -- Type 3 -- Type 4.
505
8
$a
Type 6 -- Temporal Database -- Transaction Time -- Definition -- Limitations -- Valid Time -- Definition -- Limitations -- History Data Verification -- SQL Tools -- Automatic Query Generators -- Aggregate Functions -- Window and Rank Functions -- Microsoft Excel and Other Tools -- Remove Duplicates -- Sort -- Pivot Tables -- 11 Data Quality -- What Is Data Quality? -- How Do You Benefit from Data Quality? -- Factors Determining Data Quality -- Accurate Data -- Complete Data -- Legible Data -- Relevant Data -- Reliable Data -- Timely Data -- Valid Data.
520
$a
Data mapping in data warehouse lifecycle is the process of creating a link between two distinct data models' (source and target) tables/attributes. It is required at many stages of DW life-cycle to transform data from one state to another; every stage has its own unique requirements and challenges. This book provides basic and advanced knowledge about data mapping/data transformation. It contains real life scenarios that readers face and presents solutions/standard techniques across various domains. --
$c
Edited summary from book.
650
7
$a
COMPUTERS
$x
Databases
$x
Data Mining.
$2
bisacsh
$3
1343660
650
0
$a
Data mining.
$3
528622
650
0
$a
Data warehousing.
$3
561693
655
0
$a
Electronic books.
$2
local
$3
554714
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128051856
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入