語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Time-dependent Problems in Imaging a...
~
Kaltenbacher, Barbara.
Time-dependent Problems in Imaging and Parameter Identification
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Time-dependent Problems in Imaging and Parameter Identification/ edited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald.
其他作者:
Wald, Anne.
面頁冊數:
XIV, 456 p. 90 illus., 64 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Numerical Analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-57784-1
ISBN:
9783030577841
Time-dependent Problems in Imaging and Parameter Identification
Time-dependent Problems in Imaging and Parameter Identification
[electronic resource] /edited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald. - 1st ed. 2021. - XIV, 456 p. 90 illus., 64 illus. in color.online resource.
1. Joint phase reconstruction and magnitude segmentation from velocity-encoded MRI data -- 2. Dynamic Inverse Problems for the Acoustic Wave Equation -- 3. Motion compensation strategies in tomography -- 4. Microlocal properties of dynamic Fourier integral operators -- 5. The tangential cone condition for some coefficient identification model problems in parabolic PDEs -- 6. Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data -- 7. Joint Motion Estimation and Source Identification using Convective Regularisation with an Application to the Analysis of Laser Nanoablations -- 8. Quantitative OCT reconstructions for dispersive media -- 9. Review of Image Similarity Measures for Joint Image Reconstruction from Multiple Measurements -- 10. Holmgren-John Unique Continuation Theorem for Viscoelastic Systems -- 11. Tomographic Reconstruction for Single Conjugate Adaptive Optics -- 12. Inverse Problems of Single Molecule Localization Microscopy -- 13. Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging -- 14. An inverse source problem related to acoustic nonlinearity parameter imaging.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
ISBN: 9783030577841
Standard No.: 10.1007/978-3-030-57784-1doiSubjects--Topical Terms:
671433
Numerical Analysis.
LC Class. No.: QA76.9.M35
Dewey Class. No.: 004.0151
Time-dependent Problems in Imaging and Parameter Identification
LDR
:03732nam a22004095i 4500
001
1045803
003
DE-He213
005
20210623184412.0
007
cr nn 008mamaa
008
220103s2021 gw | s |||| 0|eng d
020
$a
9783030577841
$9
978-3-030-57784-1
024
7
$a
10.1007/978-3-030-57784-1
$2
doi
035
$a
978-3-030-57784-1
050
4
$a
QA76.9.M35
072
7
$a
UYAM
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UYAM
$2
thema
072
7
$a
UFM
$2
thema
082
0 4
$a
004.0151
$2
23
245
1 0
$a
Time-dependent Problems in Imaging and Parameter Identification
$h
[electronic resource] /
$c
edited by Barbara Kaltenbacher, Thomas Schuster, Anne Wald.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIV, 456 p. 90 illus., 64 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Joint phase reconstruction and magnitude segmentation from velocity-encoded MRI data -- 2. Dynamic Inverse Problems for the Acoustic Wave Equation -- 3. Motion compensation strategies in tomography -- 4. Microlocal properties of dynamic Fourier integral operators -- 5. The tangential cone condition for some coefficient identification model problems in parabolic PDEs -- 6. Sequential subspace optimization for recovering stored energy functions in hyperelastic materials from time-dependent data -- 7. Joint Motion Estimation and Source Identification using Convective Regularisation with an Application to the Analysis of Laser Nanoablations -- 8. Quantitative OCT reconstructions for dispersive media -- 9. Review of Image Similarity Measures for Joint Image Reconstruction from Multiple Measurements -- 10. Holmgren-John Unique Continuation Theorem for Viscoelastic Systems -- 11. Tomographic Reconstruction for Single Conjugate Adaptive Optics -- 12. Inverse Problems of Single Molecule Localization Microscopy -- 13. Parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging -- 14. An inverse source problem related to acoustic nonlinearity parameter imaging.
520
$a
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.
650
2 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
1 4
$a
Math Applications in Computer Science.
$3
669887
650
0
$a
Numerical analysis.
$3
527939
650
0
$a
Optical data processing.
$3
639187
650
0
$a
Computer science—Mathematics.
$3
1253519
700
1
$a
Wald, Anne.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1349235
700
1
$a
Schuster, Thomas.
$e
author.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1253611
700
1
$a
Kaltenbacher, Barbara.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1206422
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030577834
776
0 8
$i
Printed edition:
$z
9783030577858
776
0 8
$i
Printed edition:
$z
9783030577865
856
4 0
$u
https://doi.org/10.1007/978-3-030-57784-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入