語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical Foundations for Data An...
~
Phillips, Jeff M.
Mathematical Foundations for Data Analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Mathematical Foundations for Data Analysis/ by Jeff M. Phillips.
作者:
Phillips, Jeff M.
面頁冊數:
XVII, 287 p. 109 illus., 108 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational Mathematics and Numerical Analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-62341-8
ISBN:
9783030623418
Mathematical Foundations for Data Analysis
Phillips, Jeff M.
Mathematical Foundations for Data Analysis
[electronic resource] /by Jeff M. Phillips. - 1st ed. 2021. - XVII, 287 p. 109 illus., 108 illus. in color.online resource. - Springer Series in the Data Sciences,2365-5682. - Springer Series in the Data Sciences,.
Probability review -- Convergence and sampling -- Linear algebra review -- Distances and nearest neighbors -- Linear Regression -- Gradient descent -- Dimensionality reduction -- Clustering -- Classification -- Graph structured data -- Big data and sketching.
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
ISBN: 9783030623418
Standard No.: 10.1007/978-3-030-62341-8doiSubjects--Topical Terms:
669338
Computational Mathematics and Numerical Analysis.
LC Class. No.: QA71-90
Dewey Class. No.: 518
Mathematical Foundations for Data Analysis
LDR
:02585nam a22004095i 4500
001
1045940
003
DE-He213
005
20210921213419.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030623418
$9
978-3-030-62341-8
024
7
$a
10.1007/978-3-030-62341-8
$2
doi
035
$a
978-3-030-62341-8
050
4
$a
QA71-90
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Phillips, Jeff M.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1349410
245
1 0
$a
Mathematical Foundations for Data Analysis
$h
[electronic resource] /
$c
by Jeff M. Phillips.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XVII, 287 p. 109 illus., 108 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in the Data Sciences,
$x
2365-5682
505
0
$a
Probability review -- Convergence and sampling -- Linear algebra review -- Distances and nearest neighbors -- Linear Regression -- Gradient descent -- Dimensionality reduction -- Clustering -- Classification -- Graph structured data -- Big data and sketching.
520
$a
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
0
$a
Visualization.
$3
574210
650
0
$a
Mathematics.
$3
527692
650
0
$a
Computer mathematics.
$3
1199796
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030623401
776
0 8
$i
Printed edition:
$z
9783030623425
776
0 8
$i
Printed edition:
$z
9783030623432
830
0
$a
Springer Series in the Data Sciences,
$x
2365-5674
$3
1265148
856
4 0
$u
https://doi.org/10.1007/978-3-030-62341-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入