語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Financial Data Resampling for Machin...
~
SpringerLink (Online service)
Financial Data Resampling for Machine Learning Based Trading = Application to Cryptocurrency Markets /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Financial Data Resampling for Machine Learning Based Trading/ by Tomé Almeida Borges, Rui Neves.
其他題名:
Application to Cryptocurrency Markets /
作者:
Borges, Tomé Almeida.
其他作者:
Neves, Rui.
面頁冊數:
XV, 93 p. 30 illus., 28 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational Mathematics and Numerical Analysis. -
電子資源:
https://doi.org/10.1007/978-3-030-68379-5
ISBN:
9783030683795
Financial Data Resampling for Machine Learning Based Trading = Application to Cryptocurrency Markets /
Borges, Tomé Almeida.
Financial Data Resampling for Machine Learning Based Trading
Application to Cryptocurrency Markets /[electronic resource] :by Tomé Almeida Borges, Rui Neves. - 1st ed. 2021. - XV, 93 p. 30 illus., 28 illus. in color.online resource. - SpringerBriefs in Computational Intelligence,2625-3712. - SpringerBriefs in Computational Intelligence,.
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
ISBN: 9783030683795
Standard No.: 10.1007/978-3-030-68379-5doiSubjects--Topical Terms:
669338
Computational Mathematics and Numerical Analysis.
LC Class. No.: QA71-90
Dewey Class. No.: 518
Financial Data Resampling for Machine Learning Based Trading = Application to Cryptocurrency Markets /
LDR
:02169nam a22003855i 4500
001
1045958
003
DE-He213
005
20210921230913.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030683795
$9
978-3-030-68379-5
024
7
$a
10.1007/978-3-030-68379-5
$2
doi
035
$a
978-3-030-68379-5
050
4
$a
QA71-90
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
518
$2
23
100
1
$a
Borges, Tomé Almeida.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1349437
245
1 0
$a
Financial Data Resampling for Machine Learning Based Trading
$h
[electronic resource] :
$b
Application to Cryptocurrency Markets /
$c
by Tomé Almeida Borges, Rui Neves.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XV, 93 p. 30 illus., 28 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3712
520
$a
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
669338
650
0
$a
Computer mathematics.
$3
1199796
700
1
$a
Neves, Rui.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1288909
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030683788
776
0 8
$i
Printed edition:
$z
9783030683801
830
0
$a
SpringerBriefs in Computational Intelligence,
$x
2625-3704
$3
1254760
856
4 0
$u
https://doi.org/10.1007/978-3-030-68379-5
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入