語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Segmentation, Classification, and Re...
~
Huang, Ruobing.
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data = MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data/ edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang.
其他題名:
MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /
其他作者:
Huang, Ruobing.
面頁冊數:
XIX, 156 p. 57 illus., 54 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational Biology/Bioinformatics. -
電子資源:
https://doi.org/10.1007/978-3-030-71827-5
ISBN:
9783030718275
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data = MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data
MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /[electronic resource] :edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang. - 1st ed. 2021. - XIX, 156 p. 57 illus., 54 illus. in color.online resource. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;12587. - Image Processing, Computer Vision, Pattern Recognition, and Graphics ;9219.
ABCs – Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images -- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization -- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread -- Ensembled ResUnet for Anatomical Brain Barriers Segmentation -- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume -- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition -- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures -- L2R – Learn2Reg: Multitask and Multimodal 3D Medical Image Registration -- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks -- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge -- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge -- Learning a deformable registration pyramid -- Deep learning based registration using spatial gradients and noisy segmentation labels -- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm -- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge -- TN-SCUI – Thyroid Nodule Segmentation and Classification in Ultrasound Images -- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification -- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization -- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images -- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks -- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images -- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
This book constitutes three challenges that were held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020*: the Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images Challenge, the Learn2Reg Challenge, and the Thyroid Nodule Segmentation and Classification in Ultrasound Images Challenge. The 19 papers presented in this volume were carefully reviewed and selected form numerous submissions. The ABCs challenge aims to identify the best methods of segmenting brain structures that serve as barriers to the spread of brain cancers and structures to be spared from irradiation, for use in computer assisted target definition for glioma and radiotherapy plan optimization. The papers of the L2R challenge cover a wide spectrum of conventional and learning-based registration methods and often describe novel contributions. The main goal of the TN-SCUI challenge is to find automatic algorithms to accurately segment and classify the thyroid nodules in ultrasound images. *The challenges took place virtually due to the COVID-19 pandemic.
ISBN: 9783030718275
Standard No.: 10.1007/978-3-030-71827-5doiSubjects--Topical Terms:
677363
Computational Biology/Bioinformatics.
LC Class. No.: TA1630-1650
Dewey Class. No.: 006.6
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data = MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /
LDR
:04807nam a22004095i 4500
001
1045986
003
DE-He213
005
20210826161941.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030718275
$9
978-3-030-71827-5
024
7
$a
10.1007/978-3-030-71827-5
$2
doi
035
$a
978-3-030-71827-5
050
4
$a
TA1630-1650
072
7
$a
UYQV
$2
bicssc
072
7
$a
COM016000
$2
bisacsh
072
7
$a
UYQV
$2
thema
082
0 4
$a
006.6
$2
23
245
1 0
$a
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data
$h
[electronic resource] :
$b
MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings /
$c
edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIX, 156 p. 57 illus., 54 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
12587
505
0
$a
ABCs – Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images -- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization -- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread -- Ensembled ResUnet for Anatomical Brain Barriers Segmentation -- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume -- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition -- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures -- L2R – Learn2Reg: Multitask and Multimodal 3D Medical Image Registration -- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks -- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge -- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge -- Learning a deformable registration pyramid -- Deep learning based registration using spatial gradients and noisy segmentation labels -- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm -- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge -- TN-SCUI – Thyroid Nodule Segmentation and Classification in Ultrasound Images -- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification -- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization -- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images -- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks -- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images -- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
520
$a
This book constitutes three challenges that were held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020*: the Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images Challenge, the Learn2Reg Challenge, and the Thyroid Nodule Segmentation and Classification in Ultrasound Images Challenge. The 19 papers presented in this volume were carefully reviewed and selected form numerous submissions. The ABCs challenge aims to identify the best methods of segmenting brain structures that serve as barriers to the spread of brain cancers and structures to be spared from irradiation, for use in computer assisted target definition for glioma and radiotherapy plan optimization. The papers of the L2R challenge cover a wide spectrum of conventional and learning-based registration methods and often describe novel contributions. The main goal of the TN-SCUI challenge is to find automatic algorithms to accurately segment and classify the thyroid nodules in ultrasound images. *The challenges took place virtually due to the COVID-19 pandemic.
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Computer Imaging, Vision, Pattern Recognition and Graphics.
$3
671334
650
0
$a
Bioinformatics.
$3
583857
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Optical data processing.
$3
639187
700
1
$a
Huang, Ruobing.
$e
editor.
$1
https://orcid.org/0000-0001-5672-6896
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1349468
700
1
$a
Heinrich, Mattias P.
$e
editor.
$1
https://orcid.org/0000-0002-7489-1972
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1349467
700
1
$a
Shusharina, Nadya.
$e
editor.
$1
https://orcid.org/0000-0003-3041-2551
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1349466
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030718268
776
0 8
$i
Printed edition:
$z
9783030718282
830
0
$a
Image Processing, Computer Vision, Pattern Recognition, and Graphics ;
$v
9219
$3
1253644
856
4 0
$u
https://doi.org/10.1007/978-3-030-71827-5
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
912
$a
ZDB-2-LNC
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入