語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Time Expression and Named Entity Rec...
~
Cambria, Erik.
Time Expression and Named Entity Recognition
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Time Expression and Named Entity Recognition/ by Xiaoshi Zhong, Erik Cambria.
作者:
Zhong, Xiaoshi.
其他作者:
Cambria, Erik.
面頁冊數:
XIX, 96 p. 17 illus., 11 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-78961-9
ISBN:
9783030789619
Time Expression and Named Entity Recognition
Zhong, Xiaoshi.
Time Expression and Named Entity Recognition
[electronic resource] /by Xiaoshi Zhong, Erik Cambria. - 1st ed. 2021. - XIX, 96 p. 17 illus., 11 illus. in color.online resource. - Socio-Affective Computing,102509-5714 ;. - Socio-Affective Computing,1.
Chapter 1. Introduction -- Chapter 2. Literature Review -- Chapter 3. Data Analysis -- Chapter 4. SynTime: Token Types and Heuristic Rules -- 5. TOMN: Constituent-based Tagging Scheme -- Chapter 6. UGTO: Uncommon Words and Proper Nouns -- Chapter 7. Conclusion and Future Work.
This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
ISBN: 9783030789619
Standard No.: 10.1007/978-3-030-78961-9doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
Time Expression and Named Entity Recognition
LDR
:02576nam a22004095i 4500
001
1046874
003
DE-He213
005
20210823133250.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030789619
$9
978-3-030-78961-9
024
7
$a
10.1007/978-3-030-78961-9
$2
doi
035
$a
978-3-030-78961-9
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Zhong, Xiaoshi.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1350471
245
1 0
$a
Time Expression and Named Entity Recognition
$h
[electronic resource] /
$c
by Xiaoshi Zhong, Erik Cambria.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIX, 96 p. 17 illus., 11 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Socio-Affective Computing,
$x
2509-5714 ;
$v
10
505
0
$a
Chapter 1. Introduction -- Chapter 2. Literature Review -- Chapter 3. Data Analysis -- Chapter 4. SynTime: Token Types and Heuristic Rules -- 5. TOMN: Constituent-based Tagging Scheme -- Chapter 6. UGTO: Uncommon Words and Proper Nouns -- Chapter 7. Conclusion and Future Work.
520
$a
This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
650
1 4
$a
Artificial Intelligence.
$3
646849
650
0
$a
Artificial intelligence.
$3
559380
700
1
$a
Cambria, Erik.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
883904
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030789602
776
0 8
$i
Printed edition:
$z
9783030789626
776
0 8
$i
Printed edition:
$z
9783030789633
830
0
$a
Socio-Affective Computing,
$x
2509-5706 ;
$v
1
$3
1263730
856
4 0
$u
https://doi.org/10.1007/978-3-030-78961-9
912
$a
ZDB-2-SBL
912
$a
ZDB-2-SXB
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
950
$a
Biomedical and Life Sciences (R0) (SpringerNature-43708)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入