語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data Parallel C++ = Mastering DPC++ ...
~
Tian, Xinmin.
Data Parallel C++ = Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data Parallel C++/ by James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, Xinmin Tian.
其他題名:
Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /
作者:
Reinders, James.
其他作者:
Tian, Xinmin.
面頁冊數:
XXVI, 548 p. 338 illus., 280 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Hardware and Maker. -
電子資源:
https://doi.org/10.1007/978-1-4842-5574-2
ISBN:
9781484255742
Data Parallel C++ = Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /
Reinders, James.
Data Parallel C++
Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /[electronic resource] :by James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, Xinmin Tian. - 1st ed. 2021. - XXVI, 548 p. 338 illus., 280 illus. in color.online resource.
Chapter 1: Introduction -- Chapter 2: Where code executes -- Chapter 3: Data management and ordering the uses of data -- Chapter 4: Expressing parallelism -- Chapter 5: Error handling -- Chapter 6: USM in detail -- Chapter 7: Buffers in detail -- Chapter 8: DAG scheduling in detail -- Chapter 9: Local memory and work-group barriers -- Chapter 10: Defining kernels -- Chapter 11: Vectors -- Chapter 12: Device-specific extension mechanism -- Chapter 13: Programming for GPUs -- Chapter 14: Programming for CPUs -- Chapter 15: Programming for FPGAs -- Chapter 16: Address spaces and multi_ptr -- Chapter 17: Using libraries -- Chapter 18: Working with OpenCL -- Chapter 19: Memory model and atomics.
Open Access
Learn how to accelerate C++ programs using data parallelism. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. This book teaches data-parallel programming using C++ and the SYCL standard from the Khronos Group and walks through everything needed to use SYCL for programming heterogeneous systems. The book begins by introducing data parallelism and foundational topics for effective use of SYCL and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. You will learn: • How to accelerate C++ programs using data-parallel programming • How to target multiple device types (e.g. CPU, GPU, FPGA) • How to use SYCL and SYCL compilers • How to connect with computing’s heterogeneous future via Intel’s oneAPI initiative.
ISBN: 9781484255742
Standard No.: 10.1007/978-1-4842-5574-2doiSubjects--Topical Terms:
1114124
Hardware and Maker.
LC Class. No.: QA76.7-76.73
Dewey Class. No.: 005.13
Data Parallel C++ = Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /
LDR
:03725nam a22004455i 4500
001
1047128
003
DE-He213
005
20210929202536.0
007
cr nn 008mamaa
008
220103s2021 xxu| s |||| 0|eng d
020
$a
9781484255742
$9
978-1-4842-5574-2
024
7
$a
10.1007/978-1-4842-5574-2
$2
doi
035
$a
978-1-4842-5574-2
050
4
$a
QA76.7-76.73
050
4
$a
QA76.76.C65
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051010
$2
bisacsh
072
7
$a
UMX
$2
thema
072
7
$a
UMC
$2
thema
082
0 4
$a
005.13
$2
23
100
1
$a
Reinders, James.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
908658
245
1 0
$a
Data Parallel C++
$h
[electronic resource] :
$b
Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL /
$c
by James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, Xinmin Tian.
250
$a
1st ed. 2021.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2021.
300
$a
XXVI, 548 p. 338 illus., 280 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1: Introduction -- Chapter 2: Where code executes -- Chapter 3: Data management and ordering the uses of data -- Chapter 4: Expressing parallelism -- Chapter 5: Error handling -- Chapter 6: USM in detail -- Chapter 7: Buffers in detail -- Chapter 8: DAG scheduling in detail -- Chapter 9: Local memory and work-group barriers -- Chapter 10: Defining kernels -- Chapter 11: Vectors -- Chapter 12: Device-specific extension mechanism -- Chapter 13: Programming for GPUs -- Chapter 14: Programming for CPUs -- Chapter 15: Programming for FPGAs -- Chapter 16: Address spaces and multi_ptr -- Chapter 17: Using libraries -- Chapter 18: Working with OpenCL -- Chapter 19: Memory model and atomics.
506
0
$a
Open Access
520
$a
Learn how to accelerate C++ programs using data parallelism. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. This book teaches data-parallel programming using C++ and the SYCL standard from the Khronos Group and walks through everything needed to use SYCL for programming heterogeneous systems. The book begins by introducing data parallelism and foundational topics for effective use of SYCL and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. You will learn: • How to accelerate C++ programs using data-parallel programming • How to target multiple device types (e.g. CPU, GPU, FPGA) • How to use SYCL and SYCL compilers • How to connect with computing’s heterogeneous future via Intel’s oneAPI initiative.
650
2 4
$a
Hardware and Maker.
$3
1114124
650
1 4
$a
Programming Languages, Compilers, Interpreters.
$3
669782
650
0
$a
Computer input-output equipment.
$3
559611
650
0
$a
Programming languages (Electronic computers).
$3
1127615
700
1
$a
Tian, Xinmin.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1350784
700
1
$a
Pennycook, John.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1350783
700
1
$a
Kinsner, Michael.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1350782
700
1
$a
Brodman, James.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1264932
700
1
$a
Ashbaugh, Ben.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1350781
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484255735
776
0 8
$i
Printed edition:
$z
9781484255759
776
0 8
$i
Printed edition:
$z
9781484278789
856
4 0
$u
https://doi.org/10.1007/978-1-4842-5574-2
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
912
$a
ZDB-2-SOB
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入