語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Time Series Analysis for the State-S...
~
SpringerLink (Online service)
Time Series Analysis for the State-Space Model with R/Stan
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Time Series Analysis for the State-Space Model with R/Stan/ by Junichiro Hagiwara.
作者:
Hagiwara, Junichiro.
面頁冊數:
XIII, 347 p. 216 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Macroeconomics/Monetary Economics//Financial Economics. -
電子資源:
https://doi.org/10.1007/978-981-16-0711-0
ISBN:
9789811607110
Time Series Analysis for the State-Space Model with R/Stan
Hagiwara, Junichiro.
Time Series Analysis for the State-Space Model with R/Stan
[electronic resource] /by Junichiro Hagiwara. - 1st ed. 2021. - XIII, 347 p. 216 illus.online resource.
Introduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model.
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability. .
ISBN: 9789811607110
Standard No.: 10.1007/978-981-16-0711-0doiSubjects--Topical Terms:
1069052
Macroeconomics/Monetary Economics//Financial Economics.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Time Series Analysis for the State-Space Model with R/Stan
LDR
:02746nam a22003975i 4500
001
1047654
003
DE-He213
005
20210830140144.0
007
cr nn 008mamaa
008
220103s2021 si | s |||| 0|eng d
020
$a
9789811607110
$9
978-981-16-0711-0
024
7
$a
10.1007/978-981-16-0711-0
$2
doi
035
$a
978-981-16-0711-0
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Hagiwara, Junichiro.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1351385
245
1 0
$a
Time Series Analysis for the State-Space Model with R/Stan
$h
[electronic resource] /
$c
by Junichiro Hagiwara.
250
$a
1st ed. 2021.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
XIII, 347 p. 216 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Introduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model.
520
$a
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader’s analytical capability. .
650
2 4
$a
Macroeconomics/Monetary Economics//Financial Economics.
$3
1069052
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Bayesian Inference.
$3
1211345
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
650
1 4
$a
Applied Statistics.
$3
1205141
650
0
$a
Macroeconomics.
$3
554837
650
0
$a
Econometrics.
$3
556981
650
0
$a
Statistics .
$3
1253516
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811607103
776
0 8
$i
Printed edition:
$z
9789811607127
776
0 8
$i
Printed edition:
$z
9789811607134
856
4 0
$u
https://doi.org/10.1007/978-981-16-0711-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入