語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Random Walk, Brownian Motion, and Ma...
~
Waymire, Edward C.
Random Walk, Brownian Motion, and Martingales
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Random Walk, Brownian Motion, and Martingales/ by Rabi Bhattacharya, Edward C. Waymire.
作者:
Bhattacharya, Rabi.
其他作者:
Waymire, Edward C.
面頁冊數:
XV, 396 p. 20 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics and Computing/Statistics Programs. -
電子資源:
https://doi.org/10.1007/978-3-030-78939-8
ISBN:
9783030789398
Random Walk, Brownian Motion, and Martingales
Bhattacharya, Rabi.
Random Walk, Brownian Motion, and Martingales
[electronic resource] /by Rabi Bhattacharya, Edward C. Waymire. - 1st ed. 2021. - XV, 396 p. 20 illus.online resource. - Graduate Texts in Mathematics,2922197-5612 ;. - Graduate Texts in Mathematics,222.
1. What is a Stochastic Process? -- 2. The Simple Random Walk I: Associated Boundary Value Distributions, Transience and Recurrence -- 3. The Simple Random Walk II: First Passage Times -- 4. Multidimensional Random Walk -- 5. The Poisson Process, Compound Poisson Process, and Poisson Random Field -- 6. The Kolmogorov–Chentsov Theorem and Sample Path Regularity -- 7. Random Walk, Brownian Motion and the Strong Markov Property -- 8. Coupling Methods for Markov Chains and the Renewal Theorem for Lattice Distributions -- 9. Bienyamé–Galton–Watson Simple Branching Process and Extinction -- 10. Martingales: Definitions and Examples -- 11. Optional Stopping of (Sub)Martingales -- 12. The Upcrossings Inequality and (Sub)Martingale Convergence -- 13 -- Continuous Parameter Martingales -- 14. Growth of Supercritical Bienyamé–Galton–Watson Simple Branching Processes -- 15. Stochastic Calculus for Point Processes and a Martingale Characterization of the Poisson Process -- 16. First Passage Time Distributions for Brownian Motion with Drift and a Local Limit Theorem -- 17. The Functional Central Limit Theorem (FCLT) -- 18. ArcSine Law Asymptotics -- 19. Brownian Motion on the Half-Line: Absorption and Reflection -- 20. The Brownian Bridge -- 21. Special Topic: Branching Random Walk, Polymers and Multiplicative Cascades -- 22. Special Topic: Bienyamé–Galton–Watson Simple Branching Process and Excursions -- 23. Special Topic: The Geometric Random Walk and the Binomial Tree Model of Mathematical Finance -- 24. Special Topic: Optimal Stopping Rules -- 25. Special Topic: A Comprehensive Renewal Theory for General Random Walks -- 26. Special Topic: Ruin Problems in Insurance -- 27. Special Topic: Fractional Brownian Motion and/or Trends: The Hurst Effect -- 28. Special Topic: Incompressible Navier–Stokes Equations and the LeJan–Sznitman Cascade -- References -- Related Textbooks and Monographs -- Symbol Definition List -- Name Index -- Index.
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
ISBN: 9783030789398
Standard No.: 10.1007/978-3-030-78939-8doiSubjects--Topical Terms:
669775
Statistics and Computing/Statistics Programs.
LC Class. No.: QA273.A1-274.9
Dewey Class. No.: 519.2
Random Walk, Brownian Motion, and Martingales
LDR
:04675nam a22004215i 4500
001
1049016
003
DE-He213
005
20210920221510.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030789398
$9
978-3-030-78939-8
024
7
$a
10.1007/978-3-030-78939-8
$2
doi
035
$a
978-3-030-78939-8
050
4
$a
QA273.A1-274.9
050
4
$a
QA274-274.9
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
PBWL
$2
thema
082
0 4
$a
519.2
$2
23
100
1
$a
Bhattacharya, Rabi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
684860
245
1 0
$a
Random Walk, Brownian Motion, and Martingales
$h
[electronic resource] /
$c
by Rabi Bhattacharya, Edward C. Waymire.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XV, 396 p. 20 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Graduate Texts in Mathematics,
$x
2197-5612 ;
$v
292
505
0
$a
1. What is a Stochastic Process? -- 2. The Simple Random Walk I: Associated Boundary Value Distributions, Transience and Recurrence -- 3. The Simple Random Walk II: First Passage Times -- 4. Multidimensional Random Walk -- 5. The Poisson Process, Compound Poisson Process, and Poisson Random Field -- 6. The Kolmogorov–Chentsov Theorem and Sample Path Regularity -- 7. Random Walk, Brownian Motion and the Strong Markov Property -- 8. Coupling Methods for Markov Chains and the Renewal Theorem for Lattice Distributions -- 9. Bienyamé–Galton–Watson Simple Branching Process and Extinction -- 10. Martingales: Definitions and Examples -- 11. Optional Stopping of (Sub)Martingales -- 12. The Upcrossings Inequality and (Sub)Martingale Convergence -- 13 -- Continuous Parameter Martingales -- 14. Growth of Supercritical Bienyamé–Galton–Watson Simple Branching Processes -- 15. Stochastic Calculus for Point Processes and a Martingale Characterization of the Poisson Process -- 16. First Passage Time Distributions for Brownian Motion with Drift and a Local Limit Theorem -- 17. The Functional Central Limit Theorem (FCLT) -- 18. ArcSine Law Asymptotics -- 19. Brownian Motion on the Half-Line: Absorption and Reflection -- 20. The Brownian Bridge -- 21. Special Topic: Branching Random Walk, Polymers and Multiplicative Cascades -- 22. Special Topic: Bienyamé–Galton–Watson Simple Branching Process and Excursions -- 23. Special Topic: The Geometric Random Walk and the Binomial Tree Model of Mathematical Finance -- 24. Special Topic: Optimal Stopping Rules -- 25. Special Topic: A Comprehensive Renewal Theory for General Random Walks -- 26. Special Topic: Ruin Problems in Insurance -- 27. Special Topic: Fractional Brownian Motion and/or Trends: The Hurst Effect -- 28. Special Topic: Incompressible Navier–Stokes Equations and the LeJan–Sznitman Cascade -- References -- Related Textbooks and Monographs -- Symbol Definition List -- Name Index -- Index.
520
$a
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
669775
650
1 4
$a
Probability Theory and Stochastic Processes.
$3
593945
650
0
$a
Statistics .
$3
1253516
650
0
$a
Probabilities.
$3
527847
700
1
$a
Waymire, Edward C.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
873494
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030789374
776
0 8
$i
Printed edition:
$z
9783030789381
830
0
$a
Graduate Texts in Mathematics,
$x
0072-5285 ;
$v
222
$3
1254915
856
4 0
$u
https://doi.org/10.1007/978-3-030-78939-8
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入