語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lectures on Optimal Transport
~
Brué, Elia.
Lectures on Optimal Transport
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Lectures on Optimal Transport/ by Luigi Ambrosio, Elia Brué, Daniele Semola.
作者:
Ambrosio, Luigi.
其他作者:
Semola, Daniele.
面頁冊數:
IX, 250 p. 1 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Measure and Integration. -
電子資源:
https://doi.org/10.1007/978-3-030-72162-6
ISBN:
9783030721626
Lectures on Optimal Transport
Ambrosio, Luigi.
Lectures on Optimal Transport
[electronic resource] /by Luigi Ambrosio, Elia Brué, Daniele Semola. - 1st ed. 2021. - IX, 250 p. 1 illus. in color.online resource. - La Matematica per il 3+2,1302038-5757 ;. - La Matematica per il 3+2,84.
1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brézis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto’s calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.
ISBN: 9783030721626
Standard No.: 10.1007/978-3-030-72162-6doiSubjects--Topical Terms:
672015
Measure and Integration.
LC Class. No.: QA299.6-433
Dewey Class. No.: 515
Lectures on Optimal Transport
LDR
:03354nam a22003975i 4500
001
1049258
003
DE-He213
005
20210823192355.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030721626
$9
978-3-030-72162-6
024
7
$a
10.1007/978-3-030-72162-6
$2
doi
035
$a
978-3-030-72162-6
050
4
$a
QA299.6-433
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
515
$2
23
100
1
$a
Ambrosio, Luigi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
672572
245
1 0
$a
Lectures on Optimal Transport
$h
[electronic resource] /
$c
by Luigi Ambrosio, Elia Brué, Daniele Semola.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
IX, 250 p. 1 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
La Matematica per il 3+2,
$x
2038-5757 ;
$v
130
505
0
$a
1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampére equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brézis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto’s calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
520
$a
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.
650
2 4
$a
Measure and Integration.
$3
672015
650
2 4
$a
Optimization.
$3
669174
650
1 4
$a
Analysis.
$3
669490
650
0
$a
Measure theory.
$3
527848
650
0
$a
Mathematical optimization.
$3
527675
650
0
$a
Analysis (Mathematics).
$3
1253570
650
0
$a
Mathematical analysis.
$3
527926
700
1
$a
Semola, Daniele.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1353342
700
1
$a
Brué, Elia.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1353341
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030721619
776
0 8
$i
Printed edition:
$z
9783030721633
830
0
$a
La Matematica per il 3+2,
$x
2038-5722 ;
$v
84
$3
1253905
856
4 0
$u
https://doi.org/10.1007/978-3-030-72162-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入