語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Unearthing the Real Process Behind t...
~
Janssenswillen, Gert.
Unearthing the Real Process Behind the Event Data = The Case for Increased Process Realism /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Unearthing the Real Process Behind the Event Data/ by Gert Janssenswillen.
其他題名:
The Case for Increased Process Realism /
作者:
Janssenswillen, Gert.
面頁冊數:
XVI, 283 p. 97 illus., 58 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer Applications. -
電子資源:
https://doi.org/10.1007/978-3-030-70733-0
ISBN:
9783030707330
Unearthing the Real Process Behind the Event Data = The Case for Increased Process Realism /
Janssenswillen, Gert.
Unearthing the Real Process Behind the Event Data
The Case for Increased Process Realism /[electronic resource] :by Gert Janssenswillen. - 1st ed. 2021. - XVI, 283 p. 97 illus., 58 illus. in color.online resource. - Lecture Notes in Business Information Processing,4121865-1356 ;. - Lecture Notes in Business Information Processing,206.
Part I Introduction -- 1 Process Realism -- 1.1 Introduction to Process Mining -- 1.1.1 Business Process Management -- 1.1.2 The emergence of process mining -- 1.1.3 Perspectives -- 1.1.4 Tools -- 1.1.5 Towards Evidence-based Business Process Management -- 1.2 The case for Process Realism -- 1.2.1 Motivation -- 1.2.2 Research objective -- 1.3 Methodology and Outline -- 1.3.1 Process Model Quality -- 1.3.2 Process Analytics -- Part II Process Model Quality -- 2 Introduction to Conformance Checking -- 2.1 Introduction to Process Mining -- 2.1.1 Preliminaries -- 2.1.2 Process -- 2.1.3 Event log -- 2.1.4 Model -- 2.2 Quality Dimensions -- 2.2.1 Fitness -- 2.2.2 Precision -- 2.2.3 Generalization -- 2.2.4 Simplicity -- 2.3 Quality Measures -- 2.3.1 Fitness -- 2.3.2 Precision -- 2.3.3 Generalization -- 2.4 Conclusion -- 2.5 Further Reading -- 3 Calculating the Number of Distinct Paths in a Block-Structured Model -- 3.1 Introduction -- 3.2 Formal Algorithm -- 3.2.1 Assumptions and used notations -- 3.2.2 Generic approach -- 3.2.3 Block Functions -- 3.2.4 Limitations -- 3.3 Implementation -- 3.3.1 Preliminaries -- 3.3.2 Algorithm -- 3.3.3 Extended Block Functions -- 3.3.4 Silent transitions and duplicate tasks -- 3.4 Performance -- 3.5 Conclusion and future work -- 3.6 Further Reading -- 4 Comparative Study of Quality Measures -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Methodology -- 4.3.1 Generate systems -- 4.3.2 Calculate the number of paths -- 4.3.3 Simulate logs -- 4.3.4 Discover models -- 4.3.5 Measure quality -- 4.3.6 Statistical Analysis -- 4.4 Results -- 4.4.1 Feasibility.-4.4.2 Validity -- 4.4.3 Sensitivity -- 4.5 Discussion -- 4.6 Conclusion -- 4.7 Further Reading -- 5 Reassessing the Quality Framework -- 5.1 Introduction -- 5.2 Exploratory versus confirmatory process discovery -- 5.2.1 Problem statement -- 5.3 Methodology -- 5.3.1 Generate systems -- 5.3.2 Simulate logs -- 5.3.3 Discover models -- 5.3.4 Measure log-quality -- 5.3.5 Measure system-quality -- 5.3.6 Statistical analysis -- 5.4 Results -- 5.4.1 Log versus system-perspective -- 5.4.2 Generalization -- 5.5 Discussion -- 5.6 Conclusion -- 5.7 Further Reading -- 6 Towards Mature Conformance Checking -- 6.1 Synthesis -- 6.1.1 Fitness -- 6.1.2 Precision -- 6.1.3 Generalization -- 6.2 Future research -- 6.2.1 System-fitness and system-precision -- 6.2.2 Improving the Experimental Setup -- Part III Process Analytics -- 7 Reproducible Process Analytics -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Requirements Definition -- 7.3.1 Functionality requirements -- 7.3.2 Design Requirements -- 7.4 Design and Development of Artefact -- 7.4.1 Core packages -- 7.4.2 Supplementary packages -- 7.5 Demonstration of Artefact -- 7.5.1 Event data extraction -- 7.5.2 Data Processing -- 7.5.3 Mining and Analysis -- 7.6 Discussion -- 7.7 Conclusion -- 7.8 Further Reading -- 8 Student Trajectories in Higher Education -- 8.1 Learning analytics and process mining -- 8.2 Data Understanding -- 8.3 Followed versus prescribed trajectories -- 8.3.1 Root causes -- 8.3.2 Impact -- 8.4 Failure Patterns -- 8.4.1 Bags -- 8.4.2 High-level analysis -- 8.4.3 Low-level analysis -- 8.5 Understanding Trajectory Decisions -- 8.6 Discussion -- 8.7 Conclusion -- 8.8 Further Reading -- 9 Process-Oriented Analytics in Railway Systems -- 9.1 Introduction -- 9.2 Problem statement and related work -- 9.3 Methodology -- 9.3.1 Rerouting severity -- 9.3.2 Rerouting diversity -- 9.3.3 Discovering patterns -- 9.4 Results -- 9.4.1 Rerouting severity -- 9.4.2 Rerouting diversity -- 5 Discussion -- 9.6 Conclusions -- 9.7 Further Reading -- Part IV Conclusions -- 10 Conclusions and Recommendations for Future Research -- 10.1 Process Model Quality -- 10.1.1 Lessons Learned -- 10.1.2 Recommendations for Future Research -- 10.2 Process Analytics -- 10.2.1 Lessons Learned -- 10.2.2 Recommendations for Future Research -- Afterword -- A Additional Figures and Tables Chapter 4 -- B Function Index bupaR packages -- B.1 bupaR -- B.2 edeaR -- B.3 evendataR -- B.4 xesreadR -- B.5 processmapR -- B.6 processmonitR -- B.7 petrinetR -- B.8 ptR -- B.9 discoveR -- C Scripts Chapter 8 -- D Scripts Chapter 9 -- References.
This book is a revised version of the PhD dissertation written by the author at Hasselt University in Belgium.This dissertation introduces the concept of process realism. Process realism is approached from two perspectives in this dissertation. First, quality dimensions and measures for process discovery are analyzed on a large scale and compared with each other on the basis of empirical experiments. It is shown that there are important differences between the different quality measures in terms of feasibility, validity and sensitivity. Moreover, the role and meaning of the generalization dimension is unclear. Second, process realism is also tackled from a data point of view. By developing a transparent and extensible tool-set, a framework is offered to analyze process data from different perspectives. From both perspectives, recommendations are made for future research, and a call is made to give the process realism mindset a central place within process mining analyses. In 2020, the PhD dissertation won the “BPM Dissertation Award”, granted to outstanding PhD theses in the field of Business Process Management.
ISBN: 9783030707330
Standard No.: 10.1007/978-3-030-70733-0doiSubjects--Topical Terms:
669785
Computer Applications.
LC Class. No.: HD30.2
Dewey Class. No.: 658.4038
Unearthing the Real Process Behind the Event Data = The Case for Increased Process Realism /
LDR
:06779nam a22004095i 4500
001
1050424
003
DE-He213
005
20210921163904.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030707330
$9
978-3-030-70733-0
024
7
$a
10.1007/978-3-030-70733-0
$2
doi
035
$a
978-3-030-70733-0
050
4
$a
HD30.2
072
7
$a
KJQ
$2
bicssc
072
7
$a
BUS083000
$2
bisacsh
072
7
$a
KJQ
$2
thema
082
0 4
$a
658.4038
$2
23
100
1
$a
Janssenswillen, Gert.
$e
author.
$0
(orcid)0000-0002-7474-2088
$1
https://orcid.org/0000-0002-7474-2088
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1354741
245
1 0
$a
Unearthing the Real Process Behind the Event Data
$h
[electronic resource] :
$b
The Case for Increased Process Realism /
$c
by Gert Janssenswillen.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XVI, 283 p. 97 illus., 58 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Business Information Processing,
$x
1865-1356 ;
$v
412
505
0
$a
Part I Introduction -- 1 Process Realism -- 1.1 Introduction to Process Mining -- 1.1.1 Business Process Management -- 1.1.2 The emergence of process mining -- 1.1.3 Perspectives -- 1.1.4 Tools -- 1.1.5 Towards Evidence-based Business Process Management -- 1.2 The case for Process Realism -- 1.2.1 Motivation -- 1.2.2 Research objective -- 1.3 Methodology and Outline -- 1.3.1 Process Model Quality -- 1.3.2 Process Analytics -- Part II Process Model Quality -- 2 Introduction to Conformance Checking -- 2.1 Introduction to Process Mining -- 2.1.1 Preliminaries -- 2.1.2 Process -- 2.1.3 Event log -- 2.1.4 Model -- 2.2 Quality Dimensions -- 2.2.1 Fitness -- 2.2.2 Precision -- 2.2.3 Generalization -- 2.2.4 Simplicity -- 2.3 Quality Measures -- 2.3.1 Fitness -- 2.3.2 Precision -- 2.3.3 Generalization -- 2.4 Conclusion -- 2.5 Further Reading -- 3 Calculating the Number of Distinct Paths in a Block-Structured Model -- 3.1 Introduction -- 3.2 Formal Algorithm -- 3.2.1 Assumptions and used notations -- 3.2.2 Generic approach -- 3.2.3 Block Functions -- 3.2.4 Limitations -- 3.3 Implementation -- 3.3.1 Preliminaries -- 3.3.2 Algorithm -- 3.3.3 Extended Block Functions -- 3.3.4 Silent transitions and duplicate tasks -- 3.4 Performance -- 3.5 Conclusion and future work -- 3.6 Further Reading -- 4 Comparative Study of Quality Measures -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Methodology -- 4.3.1 Generate systems -- 4.3.2 Calculate the number of paths -- 4.3.3 Simulate logs -- 4.3.4 Discover models -- 4.3.5 Measure quality -- 4.3.6 Statistical Analysis -- 4.4 Results -- 4.4.1 Feasibility.-4.4.2 Validity -- 4.4.3 Sensitivity -- 4.5 Discussion -- 4.6 Conclusion -- 4.7 Further Reading -- 5 Reassessing the Quality Framework -- 5.1 Introduction -- 5.2 Exploratory versus confirmatory process discovery -- 5.2.1 Problem statement -- 5.3 Methodology -- 5.3.1 Generate systems -- 5.3.2 Simulate logs -- 5.3.3 Discover models -- 5.3.4 Measure log-quality -- 5.3.5 Measure system-quality -- 5.3.6 Statistical analysis -- 5.4 Results -- 5.4.1 Log versus system-perspective -- 5.4.2 Generalization -- 5.5 Discussion -- 5.6 Conclusion -- 5.7 Further Reading -- 6 Towards Mature Conformance Checking -- 6.1 Synthesis -- 6.1.1 Fitness -- 6.1.2 Precision -- 6.1.3 Generalization -- 6.2 Future research -- 6.2.1 System-fitness and system-precision -- 6.2.2 Improving the Experimental Setup -- Part III Process Analytics -- 7 Reproducible Process Analytics -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Requirements Definition -- 7.3.1 Functionality requirements -- 7.3.2 Design Requirements -- 7.4 Design and Development of Artefact -- 7.4.1 Core packages -- 7.4.2 Supplementary packages -- 7.5 Demonstration of Artefact -- 7.5.1 Event data extraction -- 7.5.2 Data Processing -- 7.5.3 Mining and Analysis -- 7.6 Discussion -- 7.7 Conclusion -- 7.8 Further Reading -- 8 Student Trajectories in Higher Education -- 8.1 Learning analytics and process mining -- 8.2 Data Understanding -- 8.3 Followed versus prescribed trajectories -- 8.3.1 Root causes -- 8.3.2 Impact -- 8.4 Failure Patterns -- 8.4.1 Bags -- 8.4.2 High-level analysis -- 8.4.3 Low-level analysis -- 8.5 Understanding Trajectory Decisions -- 8.6 Discussion -- 8.7 Conclusion -- 8.8 Further Reading -- 9 Process-Oriented Analytics in Railway Systems -- 9.1 Introduction -- 9.2 Problem statement and related work -- 9.3 Methodology -- 9.3.1 Rerouting severity -- 9.3.2 Rerouting diversity -- 9.3.3 Discovering patterns -- 9.4 Results -- 9.4.1 Rerouting severity -- 9.4.2 Rerouting diversity -- 5 Discussion -- 9.6 Conclusions -- 9.7 Further Reading -- Part IV Conclusions -- 10 Conclusions and Recommendations for Future Research -- 10.1 Process Model Quality -- 10.1.1 Lessons Learned -- 10.1.2 Recommendations for Future Research -- 10.2 Process Analytics -- 10.2.1 Lessons Learned -- 10.2.2 Recommendations for Future Research -- Afterword -- A Additional Figures and Tables Chapter 4 -- B Function Index bupaR packages -- B.1 bupaR -- B.2 edeaR -- B.3 evendataR -- B.4 xesreadR -- B.5 processmapR -- B.6 processmonitR -- B.7 petrinetR -- B.8 ptR -- B.9 discoveR -- C Scripts Chapter 8 -- D Scripts Chapter 9 -- References.
520
$a
This book is a revised version of the PhD dissertation written by the author at Hasselt University in Belgium.This dissertation introduces the concept of process realism. Process realism is approached from two perspectives in this dissertation. First, quality dimensions and measures for process discovery are analyzed on a large scale and compared with each other on the basis of empirical experiments. It is shown that there are important differences between the different quality measures in terms of feasibility, validity and sensitivity. Moreover, the role and meaning of the generalization dimension is unclear. Second, process realism is also tackled from a data point of view. By developing a transparent and extensible tool-set, a framework is offered to analyze process data from different perspectives. From both perspectives, recommendations are made for future research, and a call is made to give the process realism mindset a central place within process mining analyses. In 2020, the PhD dissertation won the “BPM Dissertation Award”, granted to outstanding PhD theses in the field of Business Process Management.
650
2 4
$a
Computer Applications.
$3
669785
650
1 4
$a
Business Process Management.
$3
1066351
650
0
$a
Application software.
$3
528147
650
0
$a
Industrial management.
$3
556510
650
0
$a
Management information systems.
$3
561123
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030707323
776
0 8
$i
Printed edition:
$z
9783030707347
830
0
$a
Lecture Notes in Business Information Processing,
$x
1865-1348 ;
$v
206
$3
1253615
856
4 0
$u
https://doi.org/10.1007/978-3-030-70733-0
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
912
$a
ZDB-2-LNB
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入