語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Brauer–Grothendieck Group
~
SpringerLink (Online service)
The Brauer–Grothendieck Group
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Brauer–Grothendieck Group/ by Jean-Louis Colliot-Thélène, Alexei N. Skorobogatov.
作者:
Colliot-Thélène, Jean-Louis.
其他作者:
Skorobogatov, Alexei N.
面頁冊數:
XVIII, 450 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Associative Rings and Algebras. -
電子資源:
https://doi.org/10.1007/978-3-030-74248-5
ISBN:
9783030742485
The Brauer–Grothendieck Group
Colliot-Thélène, Jean-Louis.
The Brauer–Grothendieck Group
[electronic resource] /by Jean-Louis Colliot-Thélène, Alexei N. Skorobogatov. - 1st ed. 2021. - XVIII, 450 p.online resource. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,712197-5655 ;. - Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,63.
1 Galois Cohomology -- 2 Étale Cohomology -- 3 Brauer Groups of Schemes -- 4 Comparison of the Two Brauer Groups, II -- 5 Varieties Over a Field -- 6 Birational Invariance -- 7 Severi–Brauer Varieties and Hypersurfaces -- 8 Singular Schemes and Varieties -- 9 Varieties with a Group Action -- 10 Schemes Over Local Rings and Fields -- 11 Families of Varieties -- 12 Rationality in a Family -- 13 The Brauer–Manin Set and the Formal Lemma -- 14 Are Rational Points Dense in the Brauer–Manin Set? -- 15 The Brauer–Manin Obstruction for Zero-Cycles -- 16 Tate Conjecture, Abelian Varieties and K3 Surfaces -- Bibliography -- Index.
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
ISBN: 9783030742485
Standard No.: 10.1007/978-3-030-74248-5doiSubjects--Topical Terms:
672306
Associative Rings and Algebras.
LC Class. No.: QA564-609
Dewey Class. No.: 516.35
The Brauer–Grothendieck Group
LDR
:03858nam a22003975i 4500
001
1050869
003
DE-He213
005
20210901194511.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030742485
$9
978-3-030-74248-5
024
7
$a
10.1007/978-3-030-74248-5
$2
doi
035
$a
978-3-030-74248-5
050
4
$a
QA564-609
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
100
1
$a
Colliot-Thélène, Jean-Louis.
$e
author.
$0
(orcid)0000-0002-0387-1982
$1
https://orcid.org/0000-0002-0387-1982
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1355288
245
1 4
$a
The Brauer–Grothendieck Group
$h
[electronic resource] /
$c
by Jean-Louis Colliot-Thélène, Alexei N. Skorobogatov.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XVIII, 450 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
$x
2197-5655 ;
$v
71
505
0
$a
1 Galois Cohomology -- 2 Étale Cohomology -- 3 Brauer Groups of Schemes -- 4 Comparison of the Two Brauer Groups, II -- 5 Varieties Over a Field -- 6 Birational Invariance -- 7 Severi–Brauer Varieties and Hypersurfaces -- 8 Singular Schemes and Varieties -- 9 Varieties with a Group Action -- 10 Schemes Over Local Rings and Fields -- 11 Families of Varieties -- 12 Rationality in a Family -- 13 The Brauer–Manin Set and the Formal Lemma -- 14 Are Rational Points Dense in the Brauer–Manin Set? -- 15 The Brauer–Manin Obstruction for Zero-Cycles -- 16 Tate Conjecture, Abelian Varieties and K3 Surfaces -- Bibliography -- Index.
520
$a
This monograph provides a systematic treatment of the Brauer group of schemes, from the foundational work of Grothendieck to recent applications in arithmetic and algebraic geometry. The importance of the cohomological Brauer group for applications to Diophantine equations and algebraic geometry was discovered soon after this group was introduced by Grothendieck. The Brauer–Manin obstruction plays a crucial role in the study of rational points on varieties over global fields. The birational invariance of the Brauer group was recently used in a novel way to establish the irrationality of many new classes of algebraic varieties. The book covers the vast theory underpinning these and other applications. Intended as an introduction to cohomological methods in algebraic geometry, most of the book is accessible to readers with a knowledge of algebra, algebraic geometry and algebraic number theory at graduate level. Much of the more advanced material is not readily available in book form elsewhere; notably, de Jong’s proof of Gabber’s theorem, the specialisation method and applications of the Brauer group to rationality questions, an in-depth study of the Brauer–Manin obstruction, and proof of the finiteness theorem for the Brauer group of abelian varieties and K3 surfaces over finitely generated fields. The book surveys recent work but also gives detailed proofs of basic theorems, maintaining a balance between general theory and concrete examples. Over half a century after Grothendieck's foundational seminars on the topic, The Brauer–Grothendieck Group is a treatise that fills a longstanding gap in the literature, providing researchers, including research students, with a valuable reference on a central object of algebraic and arithmetic geometry.
650
2 4
$a
Associative Rings and Algebras.
$3
672306
650
2 4
$a
Number Theory.
$3
672023
650
1 4
$a
Algebraic Geometry.
$3
670184
650
0
$a
Rings (Algebra).
$3
685051
650
0
$a
Associative rings.
$3
893564
650
0
$a
Number theory.
$3
527883
650
0
$a
Algebraic geometry.
$3
1255324
700
1
$a
Skorobogatov, Alexei N.
$e
author.
$1
https://orcid.org/0000-0002-9309-2615
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1355289
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030742478
776
0 8
$i
Printed edition:
$z
9783030742492
830
0
$a
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,
$x
0071-1136 ;
$v
63
$3
1267908
856
4 0
$u
https://doi.org/10.1007/978-3-030-74248-5
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入