語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Reinforcement Learning Algorithms: A...
~
SpringerLink (Online service)
Reinforcement Learning Algorithms: Analysis and Applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Reinforcement Learning Algorithms: Analysis and Applications/ edited by Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, Jan Peters.
其他作者:
Belousov, Boris.
面頁冊數:
VIII, 206 p. 45 illus., 35 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Computational intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-41188-6
ISBN:
9783030411886
Reinforcement Learning Algorithms: Analysis and Applications
Reinforcement Learning Algorithms: Analysis and Applications
[electronic resource] /edited by Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, Jan Peters. - 1st ed. 2021. - VIII, 206 p. 45 illus., 35 illus. in color.online resource. - Studies in Computational Intelligence,8831860-9503 ;. - Studies in Computational Intelligence,564.
Prediction Error and Actor-Critic Hypotheses in the Brain -- Reviewing on-policy / off-policy critic learning in the context of Temporal Differences and Residual Learning -- Reward Function Design in Reinforcement Learning -- Exploration Methods In Sparse Reward Environments -- A Survey on Constraining Policy Updates Using the KL Divergence -- Fisher Information Approximations in Policy Gradient Methods -- Benchmarking the Natural gradient in Policy Gradient Methods and Evolution Strategies -- Information-Loss-Bounded Policy Optimization -- Persistent Homology for Dimensionality Reduction -- Model-free Deep Reinforcement Learning — Algorithms and Applications -- Actor vs Critic -- Bring Color to Deep Q-Networks -- Distributed Methods for Reinforcement Learning -- Model-Based Reinforcement Learning -- Challenges of Model Predictive Control in a Black Box Environment -- Control as Inference?
This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
ISBN: 9783030411886
Standard No.: 10.1007/978-3-030-41188-6doiSubjects--Topical Terms:
568984
Computational intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Reinforcement Learning Algorithms: Analysis and Applications
LDR
:03247nam a22004095i 4500
001
1051470
003
DE-He213
005
20210921194055.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030411886
$9
978-3-030-41188-6
024
7
$a
10.1007/978-3-030-41188-6
$2
doi
035
$a
978-3-030-41188-6
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Reinforcement Learning Algorithms: Analysis and Applications
$h
[electronic resource] /
$c
edited by Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone Parisi, Jan Peters.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
VIII, 206 p. 45 illus., 35 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-9503 ;
$v
883
505
0
$a
Prediction Error and Actor-Critic Hypotheses in the Brain -- Reviewing on-policy / off-policy critic learning in the context of Temporal Differences and Residual Learning -- Reward Function Design in Reinforcement Learning -- Exploration Methods In Sparse Reward Environments -- A Survey on Constraining Policy Updates Using the KL Divergence -- Fisher Information Approximations in Policy Gradient Methods -- Benchmarking the Natural gradient in Policy Gradient Methods and Evolution Strategies -- Information-Loss-Bounded Policy Optimization -- Persistent Homology for Dimensionality Reduction -- Model-free Deep Reinforcement Learning — Algorithms and Applications -- Actor vs Critic -- Bring Color to Deep Q-Networks -- Distributed Methods for Reinforcement Learning -- Model-Based Reinforcement Learning -- Challenges of Model Predictive Control in a Black Box Environment -- Control as Inference?
520
$a
This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Artificial intelligence.
$3
559380
650
1 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence.
$3
646849
700
1
$a
Belousov, Boris.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1355986
700
1
$a
Abdulsamad, Hany.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1355987
700
1
$a
Klink, Pascal.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1355988
700
1
$a
Parisi, Simone.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1355989
700
1
$a
Peters, Jan.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1022181
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030411879
776
0 8
$i
Printed edition:
$z
9783030411893
776
0 8
$i
Printed edition:
$z
9783030411909
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-41188-6
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入