語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advancing Parametric Optimization = ...
~
SpringerLink (Online service)
Advancing Parametric Optimization = On Multiparametric Linear Complementarity Problems with Parameters in General Locations /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Advancing Parametric Optimization/ by Nathan Adelgren.
其他題名:
On Multiparametric Linear Complementarity Problems with Parameters in General Locations /
作者:
Adelgren, Nathan.
面頁冊數:
XII, 113 p. 8 illus., 7 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Algebraic Geometry. -
電子資源:
https://doi.org/10.1007/978-3-030-61821-6
ISBN:
9783030618216
Advancing Parametric Optimization = On Multiparametric Linear Complementarity Problems with Parameters in General Locations /
Adelgren, Nathan.
Advancing Parametric Optimization
On Multiparametric Linear Complementarity Problems with Parameters in General Locations /[electronic resource] :by Nathan Adelgren. - 1st ed. 2021. - XII, 113 p. 8 illus., 7 illus. in color.online resource. - SpringerBriefs in Optimization,2191-575X. - SpringerBriefs in Optimization,.
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
ISBN: 9783030618216
Standard No.: 10.1007/978-3-030-61821-6doiSubjects--Topical Terms:
670184
Algebraic Geometry.
LC Class. No.: QA402.5-402.6
Dewey Class. No.: 519.6
Advancing Parametric Optimization = On Multiparametric Linear Complementarity Problems with Parameters in General Locations /
LDR
:02732nam a22003975i 4500
001
1052196
003
DE-He213
005
20211125183958.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030618216
$9
978-3-030-61821-6
024
7
$a
10.1007/978-3-030-61821-6
$2
doi
035
$a
978-3-030-61821-6
050
4
$a
QA402.5-402.6
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
519.6
$2
23
100
1
$a
Adelgren, Nathan.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1356881
245
1 0
$a
Advancing Parametric Optimization
$h
[electronic resource] :
$b
On Multiparametric Linear Complementarity Problems with Parameters in General Locations /
$c
by Nathan Adelgren.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XII, 113 p. 8 illus., 7 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Optimization,
$x
2191-575X
505
0
$a
1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References.
520
$a
The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters.The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms.
650
2 4
$a
Algebraic Geometry.
$3
670184
650
1 4
$a
Optimization.
$3
669174
650
0
$a
Algebraic geometry.
$3
1255324
650
0
$a
Mathematical optimization.
$3
527675
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030618209
776
0 8
$i
Printed edition:
$z
9783030618223
830
0
$a
SpringerBriefs in Optimization,
$x
2190-8354
$3
1254063
856
4 0
$u
https://doi.org/10.1007/978-3-030-61821-6
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入