語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable Neural Networks Based on...
~
Dombi, József.
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools/ by József Dombi, Orsolya Csiszár.
作者:
Dombi, József.
其他作者:
Csiszár, Orsolya.
面頁冊數:
XXI, 173 p. 56 illus., 50 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Complexity. -
電子資源:
https://doi.org/10.1007/978-3-030-72280-7
ISBN:
9783030722807
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
Dombi, József.
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
[electronic resource] /by József Dombi, Orsolya Csiszár. - 1st ed. 2021. - XXI, 173 p. 56 illus., 50 illus. in color.online resource. - Studies in Fuzziness and Soft Computing,4081434-9922 ;. - Studies in Fuzziness and Soft Computing,319.
Chapter 1: Connectives: Conjunctions, Disjunctions and Negations -- Chapter 2: Implications -- Chapter 3: Equivalences -- Chapter 4: Modifiers and Membership Functions in Fuzzy Sets -- Chapter 5: Aggregative Operators -- Chapter 6: Preference Operators.
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
ISBN: 9783030722807
Standard No.: 10.1007/978-3-030-72280-7doiSubjects--Topical Terms:
669595
Complexity.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
LDR
:02455nam a22004095i 4500
001
1053032
003
DE-He213
005
20210623160731.0
007
cr nn 008mamaa
008
220103s2021 gw | s |||| 0|eng d
020
$a
9783030722807
$9
978-3-030-72280-7
024
7
$a
10.1007/978-3-030-72280-7
$2
doi
035
$a
978-3-030-72280-7
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Dombi, József.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1351022
245
1 0
$a
Explainable Neural Networks Based on Fuzzy Logic and Multi-criteria Decision Tools
$h
[electronic resource] /
$c
by József Dombi, Orsolya Csiszár.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XXI, 173 p. 56 illus., 50 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Fuzziness and Soft Computing,
$x
1434-9922 ;
$v
408
505
0
$a
Chapter 1: Connectives: Conjunctions, Disjunctions and Negations -- Chapter 2: Implications -- Chapter 3: Equivalences -- Chapter 4: Modifiers and Membership Functions in Fuzzy Sets -- Chapter 5: Aggregative Operators -- Chapter 6: Preference Operators.
520
$a
The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable – and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community.
650
2 4
$a
Complexity.
$3
669595
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Computational complexity.
$3
527777
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Csiszár, Orsolya.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1357849
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030722791
776
0 8
$i
Printed edition:
$z
9783030722814
776
0 8
$i
Printed edition:
$z
9783030722821
830
0
$a
Studies in Fuzziness and Soft Computing,
$x
1434-9922 ;
$v
319
$3
1253810
856
4 0
$u
https://doi.org/10.1007/978-3-030-72280-7
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入