Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Linear Elasticity of Elastic Circula...
~
Ranz, Thomas.
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2/ von Thomas Ranz.
Author:
Ranz, Thomas.
Description:
XVII, 100 p. 43 illus.online resource. :
Contained By:
Springer Nature eBook
Subject:
Continuum physics. -
Online resource:
https://doi.org/10.1007/978-3-030-72397-2
ISBN:
9783030723972
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2
Ranz, Thomas.
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2
[electronic resource] /von Thomas Ranz. - 2nd ed. 2021. - XVII, 100 p. 43 illus.online resource. - SpringerBriefs in Computational Mechanics,2191-5350. - SpringerBriefs in Computational Mechanics,.
Introduction -- Initial position — Solution process -- Disc with circular inclusion — Plane strain condition -- Validation of the analytical solution -- Summary and outlook.
This revised, new edition presents the real analytic solutions for the “Disc with Circular Inclusion” under normal- and shear force at plane-strain state. The associated solution process, which was developed according to the principle of statically indeterminate systems, is documented extensively. The solutions are given in terms of mechanical quantities (deformations, strains and stresses). Due to the superposition of the solutions for normal force in x- and y-direction and shear force the plane strain-stress relation can be formulated. The validation of the real analytic solutions is carried out by numeric FEM solution results. Comparing the results of the finite and infinite disc there is, however, a very high correspondence of all mechanical quantities. Therefore it can be assumed the real analytical solutions are the exact solutions.
ISBN: 9783030723972
Standard No.: 10.1007/978-3-030-72397-2doiSubjects--Topical Terms:
1255031
Continuum physics.
LC Class. No.: QC6.4.C6
Dewey Class. No.: 531
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2
LDR
:02458nam a22003975i 4500
001
1053310
003
DE-He213
005
20211013093320.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030723972
$9
978-3-030-72397-2
024
7
$a
10.1007/978-3-030-72397-2
$2
doi
035
$a
978-3-030-72397-2
050
4
$a
QC6.4.C6
072
7
$a
PHD
$2
bicssc
072
7
$a
SCI041000
$2
bisacsh
072
7
$a
PHD
$2
thema
082
0 4
$a
531
$2
23
100
1
$a
Ranz, Thomas.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1327954
245
1 0
$a
Linear Elasticity of Elastic Circular Inclusions Part 2/Lineare Elastizitätstheorie bei kreisrunden elastischen Einschlüssen Teil 2
$h
[electronic resource] /
$c
von Thomas Ranz.
250
$a
2nd ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XVII, 100 p. 43 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computational Mechanics,
$x
2191-5350
505
0
$a
Introduction -- Initial position — Solution process -- Disc with circular inclusion — Plane strain condition -- Validation of the analytical solution -- Summary and outlook.
520
$a
This revised, new edition presents the real analytic solutions for the “Disc with Circular Inclusion” under normal- and shear force at plane-strain state. The associated solution process, which was developed according to the principle of statically indeterminate systems, is documented extensively. The solutions are given in terms of mechanical quantities (deformations, strains and stresses). Due to the superposition of the solutions for normal force in x- and y-direction and shear force the plane strain-stress relation can be formulated. The validation of the real analytic solutions is carried out by numeric FEM solution results. Comparing the results of the finite and infinite disc there is, however, a very high correspondence of all mechanical quantities. Therefore it can be assumed the real analytical solutions are the exact solutions.
650
0
$a
Continuum physics.
$3
1255031
650
0
$a
Materials science.
$3
557839
650
1 4
$a
Classical and Continuum Physics.
$3
1141497
650
2 4
$a
Materials Science, general.
$3
683521
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030723965
776
0 8
$i
Printed edition:
$z
9783030723989
830
0
$a
SpringerBriefs in Computational Mechanics,
$x
2191-5342
$3
1254289
856
4 0
$u
https://doi.org/10.1007/978-3-030-72397-2
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login