語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
User-Defined Tensor Data Analysis
~
Byna, Suren.
User-Defined Tensor Data Analysis
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
User-Defined Tensor Data Analysis/ by Bin Dong, Kesheng Wu, Suren Byna.
作者:
Dong, Bin.
其他作者:
Byna, Suren.
面頁冊數:
XII, 101 p. 23 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Machine Learning. -
電子資源:
https://doi.org/10.1007/978-3-030-70750-7
ISBN:
9783030707507
User-Defined Tensor Data Analysis
Dong, Bin.
User-Defined Tensor Data Analysis
[electronic resource] /by Bin Dong, Kesheng Wu, Suren Byna. - 1st ed. 2021. - XII, 101 p. 23 illus.online resource. - SpringerBriefs in Computer Science,2191-5776. - SpringerBriefs in Computer Science,.
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References. .
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS). FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
ISBN: 9783030707507
Standard No.: 10.1007/978-3-030-70750-7doiSubjects--Topical Terms:
1137723
Machine Learning.
LC Class. No.: QA76.9.D3
Dewey Class. No.: 005.74
User-Defined Tensor Data Analysis
LDR
:04865nam a22004095i 4500
001
1053865
003
DE-He213
005
20210929101952.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030707507
$9
978-3-030-70750-7
024
7
$a
10.1007/978-3-030-70750-7
$2
doi
035
$a
978-3-030-70750-7
050
4
$a
QA76.9.D3
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
UMT
$2
thema
082
0 4
$a
005.74
$2
23
100
1
$a
Dong, Bin.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1323195
245
1 0
$a
User-Defined Tensor Data Analysis
$h
[electronic resource] /
$c
by Bin Dong, Kesheng Wu, Suren Byna.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XII, 101 p. 23 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Computer Science,
$x
2191-5776
505
0
$a
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References. .
520
$a
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS). FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Data Engineering.
$3
1226308
650
2 4
$a
Big Data.
$3
1017136
650
1 4
$a
Database Management.
$3
669820
650
0
$a
Machine learning.
$3
561253
650
0
$a
Engineering—Data processing.
$3
1297966
650
0
$a
Big data.
$3
981821
650
0
$a
Database management.
$3
557799
700
1
$a
Byna, Suren.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1358807
700
1
$a
Wu, Kesheng.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1358806
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030707491
776
0 8
$i
Printed edition:
$z
9783030707514
830
0
$a
SpringerBriefs in Computer Science,
$x
2191-5768
$3
1255334
856
4 0
$u
https://doi.org/10.1007/978-3-030-70750-7
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入