語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical Foundations, Reasoning a...
~
SpringerLink (Online service)
Statistical Foundations, Reasoning and Inference = For Science and Data Science /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Statistical Foundations, Reasoning and Inference/ by Göran Kauermann, Helmut Küchenhoff, Christian Heumann.
其他題名:
For Science and Data Science /
作者:
Kauermann, Göran.
其他作者:
Heumann, Christian.
面頁冊數:
XIII, 356 p. 87 illus., 10 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. -
電子資源:
https://doi.org/10.1007/978-3-030-69827-0
ISBN:
9783030698270
Statistical Foundations, Reasoning and Inference = For Science and Data Science /
Kauermann, Göran.
Statistical Foundations, Reasoning and Inference
For Science and Data Science /[electronic resource] :by Göran Kauermann, Helmut Küchenhoff, Christian Heumann. - 1st ed. 2021. - XIII, 356 p. 87 illus., 10 illus. in color.online resource. - Springer Series in Statistics,2197-568X. - Springer Series in Statistics,.
Introduction -- Background in Probability -- Parametric Statistical Models -- Maximum Likelihood Inference -- Bayesian Statistics -- Statistical Decisions -- Regression -- Bootstrapping -- Model Selection and Model Averaging -- Multivariate and Extreme Value Distributions -- Missing and Deficient Data -- Experiments and Causality.
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
ISBN: 9783030698270
Standard No.: 10.1007/978-3-030-69827-0doiSubjects--Topical Terms:
782247
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Statistical Foundations, Reasoning and Inference = For Science and Data Science /
LDR
:02662nam a22004095i 4500
001
1054599
003
DE-He213
005
20210930191909.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030698270
$9
978-3-030-69827-0
024
7
$a
10.1007/978-3-030-69827-0
$2
doi
035
$a
978-3-030-69827-0
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Kauermann, Göran.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1300905
245
1 0
$a
Statistical Foundations, Reasoning and Inference
$h
[electronic resource] :
$b
For Science and Data Science /
$c
by Göran Kauermann, Helmut Küchenhoff, Christian Heumann.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIII, 356 p. 87 illus., 10 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Series in Statistics,
$x
2197-568X
505
0
$a
Introduction -- Background in Probability -- Parametric Statistical Models -- Maximum Likelihood Inference -- Bayesian Statistics -- Statistical Decisions -- Regression -- Bootstrapping -- Model Selection and Model Averaging -- Multivariate and Extreme Value Distributions -- Missing and Deficient Data -- Experiments and Causality.
520
$a
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
650
2 4
$a
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.
$3
782247
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Artificial Intelligence.
$3
646849
650
2 4
$a
Data Structures and Information Theory.
$3
1211601
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
0
$a
Data mining.
$3
528622
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Data structures (Computer science).
$3
680370
650
0
$a
Statistics .
$3
1253516
700
1
$a
Heumann, Christian.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
681836
700
1
$a
Küchenhoff, Helmut.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1359688
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030698263
776
0 8
$i
Printed edition:
$z
9783030698287
776
0 8
$i
Printed edition:
$z
9783030698294
830
0
$a
Springer Series in Statistics,
$x
0172-7397
$3
1257229
856
4 0
$u
https://doi.org/10.1007/978-3-030-69827-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入