語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Text Data Mining
~
Xia, Rui.
Text Data Mining
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Text Data Mining/ by Chengqing Zong, Rui Xia, Jiajun Zhang.
作者:
Zong, Chengqing.
其他作者:
Zhang, Jiajun.
面頁冊數:
XXI, 351 p. 214 illus., 7 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Machine Learning. -
電子資源:
https://doi.org/10.1007/978-981-16-0100-2
ISBN:
9789811601002
Text Data Mining
Zong, Chengqing.
Text Data Mining
[electronic resource] /by Chengqing Zong, Rui Xia, Jiajun Zhang. - 1st ed. 2021. - XXI, 351 p. 214 illus., 7 illus. in color.online resource.
Chapter 1. Introduction -- Chapter 2. Data Annotation and Preprocessing -- Chapter 3. Text Representation -- Chapter 4. Text Representation with Pretraining and Fine-tuning -- Chapter 5. Text classification -- Chapter 6. Text Clustering -- Chapter 7. Topic Model -- Chapter 8. Sentiment Analysis and Opinion Mining -- Chapter 9. Topic Detection and Tracking -- Chapter 10. Information Extraction -- Chapter 11. Automatic Text Summarization. .
This book discusses various aspects of text data mining. Unlike other books that focus on machine learning or databases, it approaches text data mining from a natural language processing (NLP) perspective. The book offers a detailed introduction to the fundamental theories and methods of text data mining, ranging from pre-processing (for both Chinese and English texts), text representation and feature selection, to text classification and text clustering. It also presents the predominant applications of text data mining, for example, topic modeling, sentiment analysis and opinion mining, topic detection and tracking, information extraction, and automatic text summarization. Bringing all the related concepts and algorithms together, it offers a comprehensive, authoritative and coherent overview. Written by three leading experts, it is valuable both as a textbook and as a reference resource for students, researchers and practitioners interested in text data mining. It can also be used for classes on text data mining or NLP.
ISBN: 9789811601002
Standard No.: 10.1007/978-981-16-0100-2doiSubjects--Topical Terms:
1137723
Machine Learning.
LC Class. No.: QA76.9.N38
Dewey Class. No.: 006.35
Text Data Mining
LDR
:02800nam a22003975i 4500
001
1054682
003
DE-He213
005
20210621122913.0
007
cr nn 008mamaa
008
220103s2021 si | s |||| 0|eng d
020
$a
9789811601002
$9
978-981-16-0100-2
024
7
$a
10.1007/978-981-16-0100-2
$2
doi
035
$a
978-981-16-0100-2
050
4
$a
QA76.9.N38
072
7
$a
UYQL
$2
bicssc
072
7
$a
COM073000
$2
bisacsh
072
7
$a
UYQL
$2
thema
082
0 4
$a
006.35
$2
23
100
1
$a
Zong, Chengqing.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1359799
245
1 0
$a
Text Data Mining
$h
[electronic resource] /
$c
by Chengqing Zong, Rui Xia, Jiajun Zhang.
250
$a
1st ed. 2021.
264
1
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
XXI, 351 p. 214 illus., 7 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
Chapter 1. Introduction -- Chapter 2. Data Annotation and Preprocessing -- Chapter 3. Text Representation -- Chapter 4. Text Representation with Pretraining and Fine-tuning -- Chapter 5. Text classification -- Chapter 6. Text Clustering -- Chapter 7. Topic Model -- Chapter 8. Sentiment Analysis and Opinion Mining -- Chapter 9. Topic Detection and Tracking -- Chapter 10. Information Extraction -- Chapter 11. Automatic Text Summarization. .
520
$a
This book discusses various aspects of text data mining. Unlike other books that focus on machine learning or databases, it approaches text data mining from a natural language processing (NLP) perspective. The book offers a detailed introduction to the fundamental theories and methods of text data mining, ranging from pre-processing (for both Chinese and English texts), text representation and feature selection, to text classification and text clustering. It also presents the predominant applications of text data mining, for example, topic modeling, sentiment analysis and opinion mining, topic detection and tracking, information extraction, and automatic text summarization. Bringing all the related concepts and algorithms together, it offers a comprehensive, authoritative and coherent overview. Written by three leading experts, it is valuable both as a textbook and as a reference resource for students, researchers and practitioners interested in text data mining. It can also be used for classes on text data mining or NLP.
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
1 4
$a
Natural Language Processing (NLP).
$3
1254293
650
0
$a
Machine learning.
$3
561253
650
0
$a
Data mining.
$3
528622
650
0
$a
Natural language processing (Computer science).
$3
802180
700
1
$a
Zhang, Jiajun.
$e
editor.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1297859
700
1
$a
Xia, Rui.
$e
author.
$1
https://orcid.org/0000-0002-7376-8593
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1353421
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9789811600999
776
0 8
$i
Printed edition:
$z
9789811601019
776
0 8
$i
Printed edition:
$z
9789811601026
856
4 0
$u
https://doi.org/10.1007/978-981-16-0100-2
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入