語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-Local Cell Adhesion Models = Sym...
~
SpringerLink (Online service)
Non-Local Cell Adhesion Models = Symmetries and Bifurcations in 1-D /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Non-Local Cell Adhesion Models/ by Andreas Buttenschön, Thomas Hillen.
其他題名:
Symmetries and Bifurcations in 1-D /
作者:
Buttenschön, Andreas.
其他作者:
Hillen, Thomas.
面頁冊數:
VIII, 152 p. 35 illus., 15 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematical Modeling and Industrial Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-67111-2
ISBN:
9783030671112
Non-Local Cell Adhesion Models = Symmetries and Bifurcations in 1-D /
Buttenschön, Andreas.
Non-Local Cell Adhesion Models
Symmetries and Bifurcations in 1-D /[electronic resource] :by Andreas Buttenschön, Thomas Hillen. - 1st ed. 2021. - VIII, 152 p. 35 illus., 15 illus. in color.online resource. - CMS/CAIMS Books in Mathematics,12730-6518 ;. - CMS/CAIMS Books in Mathematics,1.
Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.
This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.
ISBN: 9783030671112
Standard No.: 10.1007/978-3-030-67111-2doiSubjects--Topical Terms:
669172
Mathematical Modeling and Industrial Mathematics.
LC Class. No.: QH323.5
Dewey Class. No.: 570.285
Non-Local Cell Adhesion Models = Symmetries and Bifurcations in 1-D /
LDR
:02581nam a22004215i 4500
001
1055350
003
DE-He213
005
20211124161726.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030671112
$9
978-3-030-67111-2
024
7
$a
10.1007/978-3-030-67111-2
$2
doi
035
$a
978-3-030-67111-2
050
4
$a
QH323.5
050
4
$a
QH324.2-324.25
072
7
$a
PDE
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PDE
$2
thema
082
0 4
$a
570.285
$2
23
100
1
$a
Buttenschön, Andreas.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1360526
245
1 0
$a
Non-Local Cell Adhesion Models
$h
[electronic resource] :
$b
Symmetries and Bifurcations in 1-D /
$c
by Andreas Buttenschön, Thomas Hillen.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
VIII, 152 p. 35 illus., 15 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
CMS/CAIMS Books in Mathematics,
$x
2730-6518 ;
$v
1
505
0
$a
Introduction -- Preliminaries -- The Periodic Problem -- Basic Properties -- Local Bifurcation -- Global Bifurcation -- Non-local Equations with Boundary Conditions -- No-flux Boundary Conditions -- Discussion and future directions.
520
$a
This monograph considers the mathematical modeling of cellular adhesion, a key interaction force in cell biology. While deeply grounded in the biological application of cell adhesion and tissue formation, this monograph focuses on the mathematical analysis of non-local adhesion models. The novel aspect is the non-local term (an integral operator), which accounts for forces generated by long ranged cell interactions. The analysis of non-local models has started only recently, and it has become a vibrant area of applied mathematics. This monograph contributes a systematic analysis of steady states and their bifurcation structure, combining global bifurcation results pioneered by Rabinowitz, equivariant bifurcation theory, and the symmetries of the non-local term. These methods allow readers to analyze and understand cell adhesion on a deep level.
650
2 4
$a
Mathematical Modeling and Industrial Mathematics.
$3
669172
650
1 4
$a
Mathematical and Computational Biology.
$3
786706
650
0
$a
Mathematical models.
$3
527886
650
0
$a
Biomathematics.
$3
527725
700
1
$a
Hillen, Thomas.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1273705
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030671105
776
0 8
$i
Printed edition:
$z
9783030671129
776
0 8
$i
Printed edition:
$z
9783030671136
830
0
$a
CMS/CAIMS Books in Mathematics,
$x
2730-6518 ;
$v
1
$3
1360527
856
4 0
$u
https://doi.org/10.1007/978-3-030-67111-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入