語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interpretable Artificial Intelligenc...
~
SpringerLink (Online service)
Interpretable Artificial Intelligence: A Perspective of Granular Computing
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Interpretable Artificial Intelligence: A Perspective of Granular Computing/ edited by Witold Pedrycz, Shyi-Ming Chen.
其他作者:
Chen, Shyi-Ming.
面頁冊數:
VIII, 429 p. 170 illus., 138 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Artificial Intelligence. -
電子資源:
https://doi.org/10.1007/978-3-030-64949-4
ISBN:
9783030649494
Interpretable Artificial Intelligence: A Perspective of Granular Computing
Interpretable Artificial Intelligence: A Perspective of Granular Computing
[electronic resource] /edited by Witold Pedrycz, Shyi-Ming Chen. - 1st ed. 2021. - VIII, 429 p. 170 illus., 138 illus. in color.online resource. - Studies in Computational Intelligence,9371860-9503 ;. - Studies in Computational Intelligence,564.
Visualizing the Behavior of Convolutional Neural Networks for Time Series Forecasting -- Beyond Deep Event Prediction: Deep Event Understanding based on Explainable Artificial Intelligence -- Interpretation of SVM to build an Explainable AI via Granular Computing -- Factual and Counterfactual Explanation of Fuzzy Information Granules -- Survey of Explainable Machine Learning with Visual and Granular Methods beyond Quasi-explanations -- MiBeX: Malware-inserted Benign Datasets for Explainable Machine Learning -- A Generative Model Based Approach for Zero-shot Breast Cancer Segmentation Explaining Pixels’ Contribution to the Model’s Prediction.
This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.
ISBN: 9783030649494
Standard No.: 10.1007/978-3-030-64949-4doiSubjects--Topical Terms:
646849
Artificial Intelligence.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Interpretable Artificial Intelligence: A Perspective of Granular Computing
LDR
:02988nam a22004095i 4500
001
1056065
003
DE-He213
005
20211014153803.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030649494
$9
978-3-030-64949-4
024
7
$a
10.1007/978-3-030-64949-4
$2
doi
035
$a
978-3-030-64949-4
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
245
1 0
$a
Interpretable Artificial Intelligence: A Perspective of Granular Computing
$h
[electronic resource] /
$c
edited by Witold Pedrycz, Shyi-Ming Chen.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
VIII, 429 p. 170 illus., 138 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Studies in Computational Intelligence,
$x
1860-9503 ;
$v
937
505
0
$a
Visualizing the Behavior of Convolutional Neural Networks for Time Series Forecasting -- Beyond Deep Event Prediction: Deep Event Understanding based on Explainable Artificial Intelligence -- Interpretation of SVM to build an Explainable AI via Granular Computing -- Factual and Counterfactual Explanation of Fuzzy Information Granules -- Survey of Explainable Machine Learning with Visual and Granular Methods beyond Quasi-explanations -- MiBeX: Malware-inserted Benign Datasets for Explainable Machine Learning -- A Generative Model Based Approach for Zero-shot Breast Cancer Segmentation Explaining Pixels’ Contribution to the Model’s Prediction.
520
$a
This book offers a comprehensive treatise on the recent pursuits of Artificial Intelligence (AI) – Explainable Artificial Intelligence (XAI) by casting the crucial features of interpretability and explainability in the original framework of Granular Computing. The innovative perspective established with the aid of information granules provides a high level of human centricity and transparency central to the development of AI constructs. The chapters reflect the breadth of the area and cover recent developments in the methodology, advanced algorithms and applications of XAI to visual analytics, knowledge representation, learning and interpretation. The book appeals to a broad audience including researchers and practitioners interested in gaining exposure to the rapidly growing body of knowledge in AI and intelligent systems.
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Computational Intelligence.
$3
768837
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
700
1
$a
Chen, Shyi-Ming.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
785891
700
1
$a
Pedrycz, Witold.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
678017
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030649487
776
0 8
$i
Printed edition:
$z
9783030649500
776
0 8
$i
Printed edition:
$z
9783030649517
830
0
$a
Studies in Computational Intelligence,
$x
1860-949X ;
$v
564
$3
1253640
856
4 0
$u
https://doi.org/10.1007/978-3-030-64949-4
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入