語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning with Quantum Computers
~
Petruccione, Francesco.
Machine Learning with Quantum Computers
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine Learning with Quantum Computers/ by Maria Schuld, Francesco Petruccione.
作者:
Schuld, Maria.
其他作者:
Petruccione, Francesco.
面頁冊數:
XIV, 312 p. 104 illus., 74 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Mathematics, general. -
電子資源:
https://doi.org/10.1007/978-3-030-83098-4
ISBN:
9783030830984
Machine Learning with Quantum Computers
Schuld, Maria.
Machine Learning with Quantum Computers
[electronic resource] /by Maria Schuld, Francesco Petruccione. - 2nd ed. 2021. - XIV, 312 p. 104 illus., 74 illus. in color.online resource. - Quantum Science and Technology,2364-9062. - Quantum Science and Technology,.
Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
ISBN: 9783030830984
Standard No.: 10.1007/978-3-030-83098-4doiSubjects--Topical Terms:
669694
Mathematics, general.
LC Class. No.: QA76.889
Dewey Class. No.: 004.1
Machine Learning with Quantum Computers
LDR
:02611nam a22004215i 4500
001
1056199
003
DE-He213
005
20211017113706.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030830984
$9
978-3-030-83098-4
024
7
$a
10.1007/978-3-030-83098-4
$2
doi
035
$a
978-3-030-83098-4
050
4
$a
QA76.889
050
4
$a
QA402.5-QA402.6
072
7
$a
UYA
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
072
7
$a
UYA
$2
thema
082
0 4
$a
004.1
$2
23
100
1
$a
Schuld, Maria.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1208887
245
1 0
$a
Machine Learning with Quantum Computers
$h
[electronic resource] /
$c
by Maria Schuld, Francesco Petruccione.
250
$a
2nd ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIV, 312 p. 104 illus., 74 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Quantum Science and Technology,
$x
2364-9062
505
0
$a
Chapter 1. Introduction -- Chapter 2. Machine Learning -- Chapter 3. Quantum Computing -- Chapter 4. Representing Data on a Quantum Computer -- Chapter 5. Variational Circuits as Machine Learning Models -- Chapter 6. Quantum Models as Kernel Methods -- Chapter 7. Fault-Tolerant Quantum Machine Learning -- Chapter 8. Approaches Based on the Ising Model -- Chapter 9. Potential Quantum Advantages.
520
$a
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
650
2 4
$a
Mathematics, general.
$3
669694
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Quantum Computing.
$3
883739
650
0
$a
Mathematics.
$3
527692
650
0
$a
Machine learning.
$3
561253
650
0
$a
Quantum computers.
$3
564139
700
1
$a
Petruccione, Francesco.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1208888
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030830977
776
0 8
$i
Printed edition:
$z
9783030830991
776
0 8
$i
Printed edition:
$z
9783030831004
830
0
$a
Quantum Science and Technology,
$x
2364-9054
$3
1269863
856
4 0
$u
https://doi.org/10.1007/978-3-030-83098-4
912
$a
ZDB-2-PHA
912
$a
ZDB-2-SXP
950
$a
Physics and Astronomy (SpringerNature-11651)
950
$a
Physics and Astronomy (R0) (SpringerNature-43715)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入