語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Geometric Structures of Statistical ...
~
SpringerLink (Online service)
Geometric Structures of Statistical Physics, Information Geometry, and Learning = SPIGL'20, Les Houches, France, July 27–31 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Geometric Structures of Statistical Physics, Information Geometry, and Learning/ edited by Frédéric Barbaresco, Frank Nielsen.
其他題名:
SPIGL'20, Les Houches, France, July 27–31 /
其他作者:
Nielsen, Frank.
面頁冊數:
XIII, 459 p. 87 illus., 63 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Statistical Theory and Methods. -
電子資源:
https://doi.org/10.1007/978-3-030-77957-3
ISBN:
9783030779573
Geometric Structures of Statistical Physics, Information Geometry, and Learning = SPIGL'20, Les Houches, France, July 27–31 /
Geometric Structures of Statistical Physics, Information Geometry, and Learning
SPIGL'20, Les Houches, France, July 27–31 /[electronic resource] :edited by Frédéric Barbaresco, Frank Nielsen. - 1st ed. 2021. - XIII, 459 p. 87 illus., 63 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,3612194-1017 ;. - Springer Proceedings in Mathematics & Statistics,125.
PART 1: Tribute to Jean-Marie Souriau seminal works: G. de Saxcé and C.-M. Marle, Structure des Systèmes Dynamiques -- Jean-Marie Souriau’s book 50th birthday -- F. Barbaresco, Jean-Marie Souriau’s Symplectic Model of Statistical Physics : Seminal papers on Lie Groups Thermodynamics - Quod Erat Demonstrandum -- PART 2: Lie Group Geometry & Diffeological Model of Statistical Physics and Information Geometry: F. Barbaresco - Souriau-Casimir Lie Groups Thermodynamics & Machine Learning -- K. Tojo and T. Yoshino, An exponential family on the upper half plane and its conjugate prior -- E. Chevallier and N. Guigui, Wrapped statistical models on manifolds: motivations, the case SE(n), and generalization to symmetric spaces -- G. de Saxcé, Galilean Thermodynamics of Continua -- H. Vân Lê and A. Tuzhilin, Nonparametric estimations and the diffeological Fisher metric -- PART 3: Advanced Geometrical Models of Statistical Manifolds in Information Geometry: J.-P. Francoise, Information Geometry and Integrable Hamiltonian Systems -- M. N. Boyom, Relevant Differential topology in statistical manifolds -- G. Pistone, A lecture about the use of Orlicz Spaces in Information Geometry -- F. Nielsen and G. Hadjeres, Quasiconvex Jensen divergences and quasiconvex Bregman divergences -- PART 4: Geometric Structures of Mechanics, Thermodynamics & Inference for Learning: F. Gay-Balmaz and H. Yoshimura, Dirac Structures and Variational Formulation of Thermodynamics for Open Systems -- A. A. Simoes, D. Martín de Diego, M. L. Valcázar and Manuel de León, The geometry of some thermodynamic systems -- F. Chinesta, E. Cueto, M. Grmela, B. Mioya, M. Pavelka and M. Sipka, Learning Physics from Data: a Thermodynamic Interpretation -- Z. Terze, V. Pandža, M. Andrić and D. Zlatar, Computational dynamics of reduced coupled multibody-fluid system in Lie group setting -- F. Masi, I. Stefanou, P. Vannucci and V. Maffi-Berthier, Material modeling via Thermodynamics-based Artificial Neural Networks -- K. Grosvenor, Information Geometry and Quantum Fields -- PART 5: Hamiltonian Monte Carlo, HMC Sampling and Learning on Manifolds: A. Barp, The Geometric Integration of Measure-Preserving Flows for Sampling and Hamiltonian Monte Carlo -- A. Fradi, I. Adouani and C. Samir, Bayesian inference on local distributions of functions and multidimensional curves with spherical HMC sampling -- S. Huntsman, Sampling and Statistical Physics via Symmetry -- T. Gerald, H. Zaatiti and H. Hajri, A Practical hands-on for learning Graph Data Communities on Manifolds.
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
ISBN: 9783030779573
Standard No.: 10.1007/978-3-030-77957-3doiSubjects--Topical Terms:
671396
Statistical Theory and Methods.
LC Class. No.: QA76.9.M35
Dewey Class. No.: 004.0151
Geometric Structures of Statistical Physics, Information Geometry, and Learning = SPIGL'20, Les Houches, France, July 27–31 /
LDR
:05486nam a22004095i 4500
001
1056291
003
DE-He213
005
20210921180707.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030779573
$9
978-3-030-77957-3
024
7
$a
10.1007/978-3-030-77957-3
$2
doi
035
$a
978-3-030-77957-3
050
4
$a
QA76.9.M35
072
7
$a
PBWH
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBWH
$2
thema
082
0 4
$a
004.0151
$2
23
245
1 0
$a
Geometric Structures of Statistical Physics, Information Geometry, and Learning
$h
[electronic resource] :
$b
SPIGL'20, Les Houches, France, July 27–31 /
$c
edited by Frédéric Barbaresco, Frank Nielsen.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIII, 459 p. 87 illus., 63 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1017 ;
$v
361
505
0
$a
PART 1: Tribute to Jean-Marie Souriau seminal works: G. de Saxcé and C.-M. Marle, Structure des Systèmes Dynamiques -- Jean-Marie Souriau’s book 50th birthday -- F. Barbaresco, Jean-Marie Souriau’s Symplectic Model of Statistical Physics : Seminal papers on Lie Groups Thermodynamics - Quod Erat Demonstrandum -- PART 2: Lie Group Geometry & Diffeological Model of Statistical Physics and Information Geometry: F. Barbaresco - Souriau-Casimir Lie Groups Thermodynamics & Machine Learning -- K. Tojo and T. Yoshino, An exponential family on the upper half plane and its conjugate prior -- E. Chevallier and N. Guigui, Wrapped statistical models on manifolds: motivations, the case SE(n), and generalization to symmetric spaces -- G. de Saxcé, Galilean Thermodynamics of Continua -- H. Vân Lê and A. Tuzhilin, Nonparametric estimations and the diffeological Fisher metric -- PART 3: Advanced Geometrical Models of Statistical Manifolds in Information Geometry: J.-P. Francoise, Information Geometry and Integrable Hamiltonian Systems -- M. N. Boyom, Relevant Differential topology in statistical manifolds -- G. Pistone, A lecture about the use of Orlicz Spaces in Information Geometry -- F. Nielsen and G. Hadjeres, Quasiconvex Jensen divergences and quasiconvex Bregman divergences -- PART 4: Geometric Structures of Mechanics, Thermodynamics & Inference for Learning: F. Gay-Balmaz and H. Yoshimura, Dirac Structures and Variational Formulation of Thermodynamics for Open Systems -- A. A. Simoes, D. Martín de Diego, M. L. Valcázar and Manuel de León, The geometry of some thermodynamic systems -- F. Chinesta, E. Cueto, M. Grmela, B. Mioya, M. Pavelka and M. Sipka, Learning Physics from Data: a Thermodynamic Interpretation -- Z. Terze, V. Pandža, M. Andrić and D. Zlatar, Computational dynamics of reduced coupled multibody-fluid system in Lie group setting -- F. Masi, I. Stefanou, P. Vannucci and V. Maffi-Berthier, Material modeling via Thermodynamics-based Artificial Neural Networks -- K. Grosvenor, Information Geometry and Quantum Fields -- PART 5: Hamiltonian Monte Carlo, HMC Sampling and Learning on Manifolds: A. Barp, The Geometric Integration of Measure-Preserving Flows for Sampling and Hamiltonian Monte Carlo -- A. Fradi, I. Adouani and C. Samir, Bayesian inference on local distributions of functions and multidimensional curves with spherical HMC sampling -- S. Huntsman, Sampling and Statistical Physics via Symmetry -- T. Gerald, H. Zaatiti and H. Hajri, A Practical hands-on for learning Graph Data Communities on Manifolds.
520
$a
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Theoretical, Mathematical and Computational Physics.
$3
768900
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Mathematical Applications in Computer Science.
$3
815331
650
0
$a
Statistics .
$3
1253516
650
0
$a
Mathematical physics.
$3
527831
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computer mathematics.
$3
1199796
650
0
$a
Computer science—Mathematics.
$3
1253519
700
1
$a
Nielsen, Frank.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
897551
700
1
$a
Barbaresco, Frédéric.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1300653
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030779566
776
0 8
$i
Printed edition:
$z
9783030779580
776
0 8
$i
Printed edition:
$z
9783030779597
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-77957-3
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入