語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-Dimensional Covariance Matrix E...
~
SpringerLink (Online service)
High-Dimensional Covariance Matrix Estimation = An Introduction to Random Matrix Theory /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
High-Dimensional Covariance Matrix Estimation/ by Aygul Zagidullina.
其他題名:
An Introduction to Random Matrix Theory /
作者:
Zagidullina, Aygul.
面頁冊數:
XIV, 115 p. 26 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Machine Learning. -
電子資源:
https://doi.org/10.1007/978-3-030-80065-9
ISBN:
9783030800659
High-Dimensional Covariance Matrix Estimation = An Introduction to Random Matrix Theory /
Zagidullina, Aygul.
High-Dimensional Covariance Matrix Estimation
An Introduction to Random Matrix Theory /[electronic resource] :by Aygul Zagidullina. - 1st ed. 2021. - XIV, 115 p. 26 illus. in color.online resource. - SpringerBriefs in Applied Statistics and Econometrics,2524-4124. - SpringerBriefs in Applied Statistics and Econometrics,.
Foreword -- 1 Introduction -- 2 Traditional Estimators and Standard Asymptotics -- 3 Finite Sample Performance of Traditional Estimators -- 4 Traditional Estimators and High-Dimensional Asymptotics -- 5 Summary and Outlook -- Appendices.
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
ISBN: 9783030800659
Standard No.: 10.1007/978-3-030-80065-9doiSubjects--Topical Terms:
1137723
Machine Learning.
LC Class. No.: QA276-280
Dewey Class. No.: 330.015195
High-Dimensional Covariance Matrix Estimation = An Introduction to Random Matrix Theory /
LDR
:02503nam a22004095i 4500
001
1056743
003
DE-He213
005
20211029074219.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030800659
$9
978-3-030-80065-9
024
7
$a
10.1007/978-3-030-80065-9
$2
doi
035
$a
978-3-030-80065-9
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
BUS061000
$2
bisacsh
072
7
$a
PBT
$2
thema
072
7
$a
K
$2
thema
082
0 4
$a
330.015195
$2
23
100
1
$a
Zagidullina, Aygul.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1362096
245
1 0
$a
High-Dimensional Covariance Matrix Estimation
$h
[electronic resource] :
$b
An Introduction to Random Matrix Theory /
$c
by Aygul Zagidullina.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XIV, 115 p. 26 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
SpringerBriefs in Applied Statistics and Econometrics,
$x
2524-4124
505
0
$a
Foreword -- 1 Introduction -- 2 Traditional Estimators and Standard Asymptotics -- 3 Finite Sample Performance of Traditional Estimators -- 4 Traditional Estimators and High-Dimensional Asymptotics -- 5 Summary and Outlook -- Appendices.
520
$a
This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
2 4
$a
Big Data.
$3
1017136
650
1 4
$a
Statistics for Business, Management, Economics, Finance, Insurance.
$3
1211158
650
0
$a
Machine learning.
$3
561253
650
0
$a
Big data.
$3
981821
650
0
$a
Econometrics.
$3
556981
650
0
$a
Statistics .
$3
1253516
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030800642
776
0 8
$i
Printed edition:
$z
9783030800666
830
0
$a
SpringerBriefs in Applied Statistics and Econometrics,
$x
2524-4124
$3
1362097
856
4 0
$u
https://doi.org/10.1007/978-3-030-80065-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入