語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Explainable Artificial Intelligence:...
~
SpringerLink (Online service)
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning/ by Uday Kamath, John Liu.
作者:
Kamath, Uday.
其他作者:
Liu, John.
面頁冊數:
XXIII, 310 p. 194 illus., 161 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Machine Learning. -
電子資源:
https://doi.org/10.1007/978-3-030-83356-5
ISBN:
9783030833565
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
Kamath, Uday.
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
[electronic resource] /by Uday Kamath, John Liu. - 1st ed. 2021. - XXIII, 310 p. 194 illus., 161 illus. in color.online resource.
1. Introduction to Interpretability and Explainability -- 2. Pre-Model Interpretability and Explainability -- 3. Model Visualization Techniques and Traditional Interpretable Algorithms -- 4. Model Interpretability: Advances in Interpretable Machine Learning -- 5. Post-hoc Interpretability and Explanations -- 6. Explainable Deep Learning -- 7. Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision -- 8. XAI: Challenges and Future.
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group.
ISBN: 9783030833565
Standard No.: 10.1007/978-3-030-83356-5doiSubjects--Topical Terms:
1137723
Machine Learning.
LC Class. No.: Q334-342
Dewey Class. No.: 006.3
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
LDR
:04644nam a22003975i 4500
001
1057755
003
DE-He213
005
20211215083152.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030833565
$9
978-3-030-83356-5
024
7
$a
10.1007/978-3-030-83356-5
$2
doi
035
$a
978-3-030-83356-5
050
4
$a
Q334-342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
100
1
$a
Kamath, Uday.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1228006
245
1 0
$a
Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning
$h
[electronic resource] /
$c
by Uday Kamath, John Liu.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
XXIII, 310 p. 194 illus., 161 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Introduction to Interpretability and Explainability -- 2. Pre-Model Interpretability and Explainability -- 3. Model Visualization Techniques and Traditional Interpretable Algorithms -- 4. Model Interpretability: Advances in Interpretable Machine Learning -- 5. Post-hoc Interpretability and Explanations -- 6. Explainable Deep Learning -- 7. Explainability in Time Series Forecasting, Natural Language Processing, and Computer Vision -- 8. XAI: Challenges and Future.
520
$a
This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning. --Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors! --Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level. Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist. Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder of Explainable AI-XAI Group.
650
2 4
$a
Machine Learning.
$3
1137723
650
1 4
$a
Artificial Intelligence.
$3
646849
650
0
$a
Machine learning.
$3
561253
650
0
$a
Artificial intelligence.
$3
559380
700
1
$a
Liu, John.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
798373
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030833558
776
0 8
$i
Printed edition:
$z
9783030833572
776
0 8
$i
Printed edition:
$z
9783030833589
856
4 0
$u
https://doi.org/10.1007/978-3-030-83356-5
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入