語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Moment-Weight Inequality and the...
~
Salamon, Dietmar Arno.
The Moment-Weight Inequality and the Hilbert–Mumford Criterion = GIT from the Differential Geometric Viewpoint /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
The Moment-Weight Inequality and the Hilbert–Mumford Criterion/ by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon.
其他題名:
GIT from the Differential Geometric Viewpoint /
作者:
Georgoulas, Valentina.
其他作者:
Salamon, Dietmar Arno.
面頁冊數:
VII, 192 p. 3 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Algebraic Geometry. -
電子資源:
https://doi.org/10.1007/978-3-030-89300-2
ISBN:
9783030893002
The Moment-Weight Inequality and the Hilbert–Mumford Criterion = GIT from the Differential Geometric Viewpoint /
Georgoulas, Valentina.
The Moment-Weight Inequality and the Hilbert–Mumford Criterion
GIT from the Differential Geometric Viewpoint /[electronic resource] :by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon. - 1st ed. 2021. - VII, 192 p. 3 illus. in color.online resource. - Lecture Notes in Mathematics,22971617-9692 ;. - Lecture Notes in Mathematics,2144.
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.
ISBN: 9783030893002
Standard No.: 10.1007/978-3-030-89300-2doiSubjects--Topical Terms:
670184
Algebraic Geometry.
LC Class. No.: QA641-670
Dewey Class. No.: 516.36
The Moment-Weight Inequality and the Hilbert–Mumford Criterion = GIT from the Differential Geometric Viewpoint /
LDR
:02558nam a22003975i 4500
001
1057926
003
DE-He213
005
20211120120201.0
007
cr nn 008mamaa
008
220103s2021 sz | s |||| 0|eng d
020
$a
9783030893002
$9
978-3-030-89300-2
024
7
$a
10.1007/978-3-030-89300-2
$2
doi
035
$a
978-3-030-89300-2
050
4
$a
QA641-670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
100
1
$a
Georgoulas, Valentina.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1363459
245
1 4
$a
The Moment-Weight Inequality and the Hilbert–Mumford Criterion
$h
[electronic resource] :
$b
GIT from the Differential Geometric Viewpoint /
$c
by Valentina Georgoulas, Joel W. Robbin, Dietmar Arno Salamon.
250
$a
1st ed. 2021.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
VII, 192 p. 3 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Mathematics,
$x
1617-9692 ;
$v
2297
520
$a
This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.
650
2 4
$a
Algebraic Geometry.
$3
670184
650
1 4
$a
Differential Geometry.
$3
671118
650
0
$a
Algebraic geometry.
$3
1255324
650
0
$a
Differential geometry.
$3
882213
700
1
$a
Salamon, Dietmar Arno.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1363461
700
1
$a
Robbin, Joel W.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1363460
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030892999
776
0 8
$i
Printed edition:
$z
9783030893019
830
0
$a
Lecture Notes in Mathematics,
$x
0075-8434 ;
$v
2144
$3
1254300
856
4 0
$u
https://doi.org/10.1007/978-3-030-89300-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-LNM
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入