語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multivariate Statistical Analysis in the Real and Complex Domains
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Multivariate Statistical Analysis in the Real and Complex Domains/ by Arak M. Mathai, Serge B. Provost, Hans J. Haubold.
作者:
Mathai, Arak M.
其他作者:
Haubold, Hans J.
面頁冊數:
XXVII, 921 p. 3 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Complex Systems. -
電子資源:
https://doi.org/10.1007/978-3-030-95864-0
ISBN:
9783030958640
Multivariate Statistical Analysis in the Real and Complex Domains
Mathai, Arak M.
Multivariate Statistical Analysis in the Real and Complex Domains
[electronic resource] /by Arak M. Mathai, Serge B. Provost, Hans J. Haubold. - 1st ed. 2022. - XXVII, 921 p. 3 illus.online resource.
1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.
Open Access
This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.
ISBN: 9783030958640
Standard No.: 10.1007/978-3-030-95864-0doiSubjects--Topical Terms:
888664
Complex Systems.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Multivariate Statistical Analysis in the Real and Complex Domains
LDR
:02953nam a22004215i 4500
001
1083975
003
DE-He213
005
20221208071557.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030958640
$9
978-3-030-95864-0
024
7
$a
10.1007/978-3-030-95864-0
$2
doi
035
$a
978-3-030-95864-0
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Mathai, Arak M.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1390142
245
1 0
$a
Multivariate Statistical Analysis in the Real and Complex Domains
$h
[electronic resource] /
$c
by Arak M. Mathai, Serge B. Provost, Hans J. Haubold.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XXVII, 921 p. 3 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Mathematical Preliminaries -- 2. The Univariate Gaussian and Related Distribution -- 3. Multivariate Gaussian and Related Distributions -- 4. The Matrix-variate Gaussian Distribution -- 5. Matrix-variate Gamma and Beta Distributions -- 6. Hypothesis Testing and Null Distributions -- 7. Rectangular Matrix-variate Distributions -- 8. Distributions of Eigenvalues and Eigenvectors -- 9. Principal Component Analysis -- 10. Canonical Correlation Analysis -- 11. Factor Analysis -- 12. Classification Problems -- 13. Multivariate Analysis of Variance (MANOVA) -- 14. Profile Analysis and Growth Curves -- 15. Cluster Analysis and Correspondence Analysis.
506
0
$a
Open Access
520
$a
This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.
650
2 4
$a
Complex Systems.
$3
888664
650
2 4
$a
Multivariate Analysis.
$3
563891
650
2 4
$a
Statistical Theory and Methods.
$3
671396
650
1 4
$a
Mathematical Statistics.
$3
1366363
650
0
$a
System theory.
$3
566168
650
0
$a
Multivariate analysis.
$3
577402
650
0
$a
Statistics .
$3
1253516
650
0
$a
Mathematical statistics.
$3
527941
700
1
$a
Haubold, Hans J.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
679236
700
1
$a
Provost, Serge B.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1390143
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030958633
776
0 8
$i
Printed edition:
$z
9783030958657
776
0 8
$i
Printed edition:
$z
9783030958664
856
4 0
$u
https://doi.org/10.1007/978-3-030-95864-0
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
912
$a
ZDB-2-SOB
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入