語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Spherical Functions of Mathematical Geosciences = A Scalar, Vectorial, and Tensorial Setup /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Spherical Functions of Mathematical Geosciences/ by Willi Freeden, Michael Schreiner.
其他題名:
A Scalar, Vectorial, and Tensorial Setup /
作者:
Freeden, Willi.
其他作者:
Schreiner, Michael.
面頁冊數:
XV, 729 p. 74 illus., 71 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Applications of Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-662-65692-1
ISBN:
9783662656921
Spherical Functions of Mathematical Geosciences = A Scalar, Vectorial, and Tensorial Setup /
Freeden, Willi.
Spherical Functions of Mathematical Geosciences
A Scalar, Vectorial, and Tensorial Setup /[electronic resource] :by Willi Freeden, Michael Schreiner. - 2nd ed. 2022. - XV, 729 p. 74 illus., 71 illus. in color.online resource. - Geosystems Mathematics,2510-1552. - Geosystems Mathematics,.
Basic Settings and Spherical Nomenclature -- Scalar Spherical Harmonics -- Green’s Functions and Integral Formulas -- Vector Spherical Harmonics -- Tensor Spherical Harmonics -- Scalar Zonal Kernel Functions -- Vector Zonal Kernel Functions -- Tensorial Zonal Kernel Functions -- Zonal Function Modeling of Earth’s Mass Distribution.
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
ISBN: 9783662656921
Standard No.: 10.1007/978-3-662-65692-1doiSubjects--Topical Terms:
669175
Applications of Mathematics.
Spherical Functions of Mathematical Geosciences = A Scalar, Vectorial, and Tensorial Setup /
LDR
:02889nam a22003615i 4500
001
1084319
003
DE-He213
005
20221014181552.0
007
cr nn 008mamaa
008
221228s2022 gw | s |||| 0|eng d
020
$a
9783662656921
$9
978-3-662-65692-1
024
7
$a
10.1007/978-3-662-65692-1
$2
doi
035
$a
978-3-662-65692-1
072
7
$a
SCI032000
$2
bisacsh
100
1
$a
Freeden, Willi.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
896508
245
1 0
$a
Spherical Functions of Mathematical Geosciences
$h
[electronic resource] :
$b
A Scalar, Vectorial, and Tensorial Setup /
$c
by Willi Freeden, Michael Schreiner.
250
$a
2nd ed. 2022.
264
1
$a
Berlin, Heidelberg :
$b
Springer Berlin Heidelberg :
$b
Imprint: Birkhäuser,
$c
2022.
300
$a
XV, 729 p. 74 illus., 71 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Geosystems Mathematics,
$x
2510-1552
505
0
$a
Basic Settings and Spherical Nomenclature -- Scalar Spherical Harmonics -- Green’s Functions and Integral Formulas -- Vector Spherical Harmonics -- Tensor Spherical Harmonics -- Scalar Zonal Kernel Functions -- Vector Zonal Kernel Functions -- Tensorial Zonal Kernel Functions -- Zonal Function Modeling of Earth’s Mass Distribution.
520
$a
This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The content shows a twofold transition: First, the natural transition from scalar to vectorial and tensorial theory of spherical harmonics is given in a coordinate-free context, based on variants of the addition theorem, Funk-Hecke formulas, and Helmholtz as well as Hardy-Hodge decompositions. Second, the canonical transition from spherical harmonics via zonal (kernel) functions to the Dirac kernel is given in close orientation to an uncertainty principle classifying the space/frequency (momentum) behavior of the functions for purposes of data analysis and (geo-)application. The whole palette of spherical functions is collected in a well-structured form for modeling and simulating the phenomena and processes occurring in the Earth's system. The result is a work which, while reflecting the present state of knowledge in a time-related manner, claims to be of largely timeless significance in (geo-)mathematical research and teaching.
650
2 4
$a
Applications of Mathematics.
$3
669175
650
1 4
$a
Solid Earth Sciences.
$3
1390593
650
0
$a
Mathematics.
$3
527692
700
1
$a
Schreiner, Michael.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
896509
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783662656914
776
0 8
$i
Printed edition:
$z
9783662656938
776
0 8
$i
Printed edition:
$z
9783662656945
830
0
$a
Geosystems Mathematics,
$x
2510-1544
$3
1284560
856
4 0
$u
https://doi.org/10.1007/978-3-662-65692-1
912
$a
ZDB-2-EES
912
$a
ZDB-2-SXEE
950
$a
Earth and Environmental Science (SpringerNature-11646)
950
$a
Earth and Environmental Science (R0) (SpringerNature-43711)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入