語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
R 4 Data Science Quick Reference = A Pocket Guide to APIs, Libraries, and Packages /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
R 4 Data Science Quick Reference/ by Thomas Mailund.
其他題名:
A Pocket Guide to APIs, Libraries, and Packages /
作者:
Mailund, Thomas.
面頁冊數:
IX, 232 p. 13 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Computer Science. -
電子資源:
https://doi.org/10.1007/978-1-4842-8780-4
ISBN:
9781484287804
R 4 Data Science Quick Reference = A Pocket Guide to APIs, Libraries, and Packages /
Mailund, Thomas.
R 4 Data Science Quick Reference
A Pocket Guide to APIs, Libraries, and Packages /[electronic resource] :by Thomas Mailund. - 2nd ed. 2022. - IX, 232 p. 13 illus.online resource.
1. Introduction. - 2. Importing Data: readr -- 3. Representing Tables: tibble. - 4. Tidy+select, 5. Reformatting Tables: tidyr -- 6. Pipelines: magrittr -- 7. Functional Programming: purrr. - 8. Manipulating Data Frames: dplyr. - 9. Working with Strings: stringr -- 10. Working with Factors: forcats. - 11. Working with Dates: lubridate. - 12. Working with Models: broom and modelr. - 13. Plotting: ggplot2 -- 14. Conclusions.
In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub.. You will: Implement applicable R 4 programming language specification features Import data with readr Work with categories using forcats, time and dates with lubridate, and strings with stringr Format data using tidyr and then transform that data using magrittr and dplyr Write functions with R for data science, data mining, and analytics-based applications Visualize data with ggplot2 and fit data to models using modelr.
ISBN: 9781484287804
Standard No.: 10.1007/978-1-4842-8780-4doiSubjects--Topical Terms:
593922
Computer Science.
LC Class. No.: QA76.7-.73
Dewey Class. No.: 005.13
R 4 Data Science Quick Reference = A Pocket Guide to APIs, Libraries, and Packages /
LDR
:02769nam a22003855i 4500
001
1084812
003
DE-He213
005
20221028175026.0
007
cr nn 008mamaa
008
221228s2022 xxu| s |||| 0|eng d
020
$a
9781484287804
$9
978-1-4842-8780-4
024
7
$a
10.1007/978-1-4842-8780-4
$2
doi
035
$a
978-1-4842-8780-4
050
4
$a
QA76.7-.73
072
7
$a
UMX
$2
bicssc
072
7
$a
COM000000
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
005.13
$2
23
100
1
$a
Mailund, Thomas.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1140758
245
1 0
$a
R 4 Data Science Quick Reference
$h
[electronic resource] :
$b
A Pocket Guide to APIs, Libraries, and Packages /
$c
by Thomas Mailund.
250
$a
2nd ed. 2022.
264
1
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2022.
300
$a
IX, 232 p. 13 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
505
0
$a
1. Introduction. - 2. Importing Data: readr -- 3. Representing Tables: tibble. - 4. Tidy+select, 5. Reformatting Tables: tidyr -- 6. Pipelines: magrittr -- 7. Functional Programming: purrr. - 8. Manipulating Data Frames: dplyr. - 9. Working with Strings: stringr -- 10. Working with Factors: forcats. - 11. Working with Dates: lubridate. - 12. Working with Models: broom and modelr. - 13. Plotting: ggplot2 -- 14. Conclusions.
520
$a
In this handy, quick reference book you'll be introduced to several R data science packages, with examples of how to use each of them. All concepts will be covered concisely, with many illustrative examples using the following APIs: readr, dibble, forecasts, lubridate, stringr, tidyr, magnittr, dplyr, purrr, ggplot2, modelr, and more. With R 4 Data Science Quick Reference, you'll have the code, APIs, and insights to write data science-based applications in the R programming language. You'll also be able to carry out data analysis. All source code used in the book is freely available on GitHub.. You will: Implement applicable R 4 programming language specification features Import data with readr Work with categories using forcats, time and dates with lubridate, and strings with stringr Format data using tidyr and then transform that data using magrittr and dplyr Write functions with R for data science, data mining, and analytics-based applications Visualize data with ggplot2 and fit data to models using modelr.
650
2 4
$a
Computer Science.
$3
593922
650
2 4
$a
Big Data.
$3
1017136
650
1 4
$a
Programming Language.
$3
1365750
650
0
$a
Computer science.
$3
573171
650
0
$a
Big data.
$3
981821
650
0
$a
Programming languages (Electronic computers).
$3
1127615
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9781484287798
776
0 8
$i
Printed edition:
$z
9781484287811
856
4 0
$u
https://doi.org/10.1007/978-1-4842-8780-4
912
$a
ZDB-2-CWD
912
$a
ZDB-2-SXPC
950
$a
Professional and Applied Computing (SpringerNature-12059)
950
$a
Professional and Applied Computing (R0) (SpringerNature-43716)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入