語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Energy Efficient Computation Offloading in Mobile Edge Computing
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Energy Efficient Computation Offloading in Mobile Edge Computing/ by Ying Chen, Ning Zhang, Yuan Wu, Sherman Shen.
作者:
Chen, Ying.
其他作者:
Shen, Sherman.
面頁冊數:
XIV, 156 p. 38 illus.online resource. :
Contained By:
Springer Nature eBook
標題:
Communications Engineering, Networks. -
電子資源:
https://doi.org/10.1007/978-3-031-16822-2
ISBN:
9783031168222
Energy Efficient Computation Offloading in Mobile Edge Computing
Chen, Ying.
Energy Efficient Computation Offloading in Mobile Edge Computing
[electronic resource] /by Ying Chen, Ning Zhang, Yuan Wu, Sherman Shen. - 1st ed. 2022. - XIV, 156 p. 38 illus.online resource. - Wireless Networks,2366-1445. - Wireless Networks,.
Introduction -- 1.1 Background -- 1.1.1 Mobile Cloud Computing -- 1.1.2 Mobile Edge Computing -- 1.1.3 Computation Offloading -- 1.2 Challenges -- 1.3 Contributions -- 1.4 Book Outline -- References -- 2 Dynamic Computation Offloading for Energy Efficiency in Mobile -- Edge Computing -- 2.1 System Model and Problem Statement -- 2.1.1 Network Model -- 2.1.2 Task Offloading Model -- 2.1.3 Task Queuing Model -- 2.1.4 Energy Consumption Model -- 2.1.5 Problem Statement -- 2.2 EEDCO: Energy Efficient Dynamic Computing Offloading for -- Mobile Edge Computing -- 2.2.1 Joint Optimization of Energy and Queue -- 2.2.2 Dynamic Computation Offloading for Mobile Edge -- Computing -- 2.2.3 Trade-off Between Queue Backlog and Energy Efficiency -- 2.2.4 Convergence and Complexity Analysis -- 2.3 Performance Evaluation -- 2.3.1 Impacts of Parameters -- 2.3.2 Performance Comparison with EA and QW Schemes -- 2.4 Literature Review -- 2.5 Summary -- References -- ix -- x Contents -- 3 Energy Efficient Offloading and Frequency Scaling for Internet of -- Things Devices -- 3.1 System Model and Problem Formulation -- 3.1.1 Network Model -- 3.1.2 Task Model -- 3.1.3 Queuing Model -- 3.1.4 Energy Consumption Model -- 3.1.5 Problem Formulation -- 3.2 COFSEE:Computation Offloading and Frequency Scaling for -- Energy Efficiency of Internet of Things Devices -- 3.2.1 Problem Transformation -- 3.2.2 Optimal Frequency Scaling -- 3.2.3 Local Computation Allocation -- 3.2.4 MEC Computation Allocation -- 3.2.5 Theoretical Analysis -- 3.3 Performance Evaluation -- 3.3.1 Impacts of System Parameters -- 3.3.2 Performance Comparison with RLE,RME and TS Schemes -- 3.4 Literature Review -- 3.5 Summary -- References -- 4 Deep Reinforcement Learning for Delay-aware and Energy-Efficient -- Computation Offloading -- 4.1 System Model and Problem formulation -- 4.1.1 System Mode -- 4.1.2 Problem Formulation -- 4.2 Proposed DRL Method -- 4.2.1 Data prepossessing -- 4.2.2 DRL Model -- 4.2.3 Training -- 4.3 Performance Evaluation -- 4.4 Literature Review -- 4.5 Summary -- References -- 5 Energy-Efficient Multi-task Multi-access Computation Offloading -- via NOMA -- 5.1 System Model and Problem Formulation -- 5.1.1 Motivation -- 5.1.2 System Model -- 5.1.3 Problem Formulation -- 5.2 LEEMMO: Layered Energy-efficient Multi-task Multi-access -- Algorithm -- 5.2.1 Layered Decomposition of Joint Optimization Problem -- Contents xi -- 5.2.2 Proposed Subroutine for Solving Problem (TEM-E-Sub) -- 5.2.3 A Layered Algorithm for Solving Problem (TEM-E-Top) -- 5.2.4 DRL-based Online Algorithm -- 5.3 Performance Evaluation -- 5.3.1 Impacts of Parameters -- 5.3.2 Performance Comparison with FDMA based Offloading -- Schemes -- 5.4 Literature Review -- 5.5 Summary -- Reference -- 6 Conclusion -- 6.1 Concluding Remarks -- 6.2 Future Directions -- References. .
This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices’ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions. Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book. .
ISBN: 9783031168222
Standard No.: 10.1007/978-3-031-16822-2doiSubjects--Topical Terms:
669809
Communications Engineering, Networks.
LC Class. No.: TK5105.5-5105.9
Dewey Class. No.: 004.6
Energy Efficient Computation Offloading in Mobile Edge Computing
LDR
:06096nam a22004095i 4500
001
1084923
003
DE-He213
005
20221030200947.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031168222
$9
978-3-031-16822-2
024
7
$a
10.1007/978-3-031-16822-2
$2
doi
035
$a
978-3-031-16822-2
050
4
$a
TK5105.5-5105.9
072
7
$a
UKN
$2
bicssc
072
7
$a
COM075000
$2
bisacsh
072
7
$a
UKN
$2
thema
082
0 4
$a
004.6
$2
23
100
1
$a
Chen, Ying.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1388447
245
1 0
$a
Energy Efficient Computation Offloading in Mobile Edge Computing
$h
[electronic resource] /
$c
by Ying Chen, Ning Zhang, Yuan Wu, Sherman Shen.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XIV, 156 p. 38 illus.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Wireless Networks,
$x
2366-1445
505
0
$a
Introduction -- 1.1 Background -- 1.1.1 Mobile Cloud Computing -- 1.1.2 Mobile Edge Computing -- 1.1.3 Computation Offloading -- 1.2 Challenges -- 1.3 Contributions -- 1.4 Book Outline -- References -- 2 Dynamic Computation Offloading for Energy Efficiency in Mobile -- Edge Computing -- 2.1 System Model and Problem Statement -- 2.1.1 Network Model -- 2.1.2 Task Offloading Model -- 2.1.3 Task Queuing Model -- 2.1.4 Energy Consumption Model -- 2.1.5 Problem Statement -- 2.2 EEDCO: Energy Efficient Dynamic Computing Offloading for -- Mobile Edge Computing -- 2.2.1 Joint Optimization of Energy and Queue -- 2.2.2 Dynamic Computation Offloading for Mobile Edge -- Computing -- 2.2.3 Trade-off Between Queue Backlog and Energy Efficiency -- 2.2.4 Convergence and Complexity Analysis -- 2.3 Performance Evaluation -- 2.3.1 Impacts of Parameters -- 2.3.2 Performance Comparison with EA and QW Schemes -- 2.4 Literature Review -- 2.5 Summary -- References -- ix -- x Contents -- 3 Energy Efficient Offloading and Frequency Scaling for Internet of -- Things Devices -- 3.1 System Model and Problem Formulation -- 3.1.1 Network Model -- 3.1.2 Task Model -- 3.1.3 Queuing Model -- 3.1.4 Energy Consumption Model -- 3.1.5 Problem Formulation -- 3.2 COFSEE:Computation Offloading and Frequency Scaling for -- Energy Efficiency of Internet of Things Devices -- 3.2.1 Problem Transformation -- 3.2.2 Optimal Frequency Scaling -- 3.2.3 Local Computation Allocation -- 3.2.4 MEC Computation Allocation -- 3.2.5 Theoretical Analysis -- 3.3 Performance Evaluation -- 3.3.1 Impacts of System Parameters -- 3.3.2 Performance Comparison with RLE,RME and TS Schemes -- 3.4 Literature Review -- 3.5 Summary -- References -- 4 Deep Reinforcement Learning for Delay-aware and Energy-Efficient -- Computation Offloading -- 4.1 System Model and Problem formulation -- 4.1.1 System Mode -- 4.1.2 Problem Formulation -- 4.2 Proposed DRL Method -- 4.2.1 Data prepossessing -- 4.2.2 DRL Model -- 4.2.3 Training -- 4.3 Performance Evaluation -- 4.4 Literature Review -- 4.5 Summary -- References -- 5 Energy-Efficient Multi-task Multi-access Computation Offloading -- via NOMA -- 5.1 System Model and Problem Formulation -- 5.1.1 Motivation -- 5.1.2 System Model -- 5.1.3 Problem Formulation -- 5.2 LEEMMO: Layered Energy-efficient Multi-task Multi-access -- Algorithm -- 5.2.1 Layered Decomposition of Joint Optimization Problem -- Contents xi -- 5.2.2 Proposed Subroutine for Solving Problem (TEM-E-Sub) -- 5.2.3 A Layered Algorithm for Solving Problem (TEM-E-Top) -- 5.2.4 DRL-based Online Algorithm -- 5.3 Performance Evaluation -- 5.3.1 Impacts of Parameters -- 5.3.2 Performance Comparison with FDMA based Offloading -- Schemes -- 5.4 Literature Review -- 5.5 Summary -- Reference -- 6 Conclusion -- 6.1 Concluding Remarks -- 6.2 Future Directions -- References. .
520
$a
This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices’ delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions. Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book. .
650
2 4
$a
Communications Engineering, Networks.
$3
669809
650
2 4
$a
Wireless and Mobile Communication.
$3
1207058
650
1 4
$a
Computer Communication Networks.
$3
669310
650
0
$a
Telecommunication.
$3
568341
650
0
$a
Mobile communication systems.
$3
562917
650
0
$a
Wireless communication systems.
$3
562740
650
0
$a
Computer networks .
$3
1365720
700
1
$a
Shen, Sherman.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1391313
700
1
$a
Wu, Yuan.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1250543
700
1
$a
Zhang, Ning.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1023566
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031168215
776
0 8
$i
Printed edition:
$z
9783031168239
776
0 8
$i
Printed edition:
$z
9783031168246
830
0
$a
Wireless Networks,
$x
2366-1186
$3
1258208
856
4 0
$u
https://doi.org/10.1007/978-3-031-16822-2
912
$a
ZDB-2-SCS
912
$a
ZDB-2-SXCS
950
$a
Computer Science (SpringerNature-11645)
950
$a
Computer Science (R0) (SpringerNature-43710)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入