語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs/ by Jihoon Lee, Carlos Morales.
作者:
Lee, Jihoon.
其他作者:
Morales, Carlos.
面頁冊數:
VIII, 166 p. 5 illus., 2 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Differential Geometry. -
電子資源:
https://doi.org/10.1007/978-3-031-12031-2
ISBN:
9783031120312
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
Lee, Jihoon.
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
[electronic resource] /by Jihoon Lee, Carlos Morales. - 1st ed. 2022. - VIII, 166 p. 5 illus., 2 illus. in color.online resource. - Frontiers in Mathematics,1660-8054. - Frontiers in Mathematics,.
Part I: Abstract Theory -- Gromov-Hausdorff distances -- Stability -- Continuity of Shift Operator -- Shadowing from Gromov-Hausdorff Viewpoint -- Part II: Applications to PDEs -- GH-Stability of Reaction Diffusion Equation -- Stability of Inertial Manifolds -- Stability of Chafee-Infante Equations.
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs. .
ISBN: 9783031120312
Standard No.: 10.1007/978-3-031-12031-2doiSubjects--Topical Terms:
671118
Differential Geometry.
LC Class. No.: QA843-871
Dewey Class. No.: 515.39
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
LDR
:02412nam a22003975i 4500
001
1084932
003
DE-He213
005
20221030042815.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031120312
$9
978-3-031-12031-2
024
7
$a
10.1007/978-3-031-12031-2
$2
doi
035
$a
978-3-031-12031-2
050
4
$a
QA843-871
072
7
$a
GPFC
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
GPFC
$2
thema
082
0 4
$a
515.39
$2
23
100
1
$a
Lee, Jihoon.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1391320
245
1 0
$a
Gromov-Hausdorff Stability of Dynamical Systems and Applications to PDEs
$h
[electronic resource] /
$c
by Jihoon Lee, Carlos Morales.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhäuser,
$c
2022.
300
$a
VIII, 166 p. 5 illus., 2 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Frontiers in Mathematics,
$x
1660-8054
505
0
$a
Part I: Abstract Theory -- Gromov-Hausdorff distances -- Stability -- Continuity of Shift Operator -- Shadowing from Gromov-Hausdorff Viewpoint -- Part II: Applications to PDEs -- GH-Stability of Reaction Diffusion Equation -- Stability of Inertial Manifolds -- Stability of Chafee-Infante Equations.
520
$a
This monograph presents new insights into the perturbation theory of dynamical systems based on the Gromov-Hausdorff distance. In the first part, the authors introduce the notion of Gromov-Hausdorff distance between compact metric spaces, along with the corresponding distance for continuous maps, flows, and group actions on these spaces. They also focus on the stability of certain dynamical objects like shifts, global attractors, and inertial manifolds. Applications to dissipative PDEs, such as the reaction-diffusion and Chafee-Infante equations, are explored in the second part. This text will be of interest to graduates students and researchers working in the areas of topological dynamics and PDEs. .
650
2 4
$a
Differential Geometry.
$3
671118
650
2 4
$a
Differential Equations.
$3
681826
650
1 4
$a
Dynamical Systems.
$3
1366074
650
0
$a
Geometry, Differential.
$3
527830
650
0
$a
Differential equations.
$3
527664
650
0
$a
Dynamical systems.
$3
1249739
700
1
$a
Morales, Carlos.
$e
author.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
1391321
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031120305
776
0 8
$i
Printed edition:
$z
9783031120329
830
0
$a
Frontiers in Mathematics,
$x
1660-8046
$3
1258213
856
4 0
$u
https://doi.org/10.1007/978-3-031-12031-2
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入