語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
New Frontiers in Bayesian Statistics = BAYSM 2021, Online, September 1–3 /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
New Frontiers in Bayesian Statistics/ edited by Raffaele Argiento, Federico Camerlenghi, Sally Paganin.
其他題名:
BAYSM 2021, Online, September 1–3 /
其他作者:
Paganin, Sally.
面頁冊數:
XI, 117 p. 21 illus., 14 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Stochastic Processes. -
電子資源:
https://doi.org/10.1007/978-3-031-16427-9
ISBN:
9783031164279
New Frontiers in Bayesian Statistics = BAYSM 2021, Online, September 1–3 /
New Frontiers in Bayesian Statistics
BAYSM 2021, Online, September 1–3 /[electronic resource] :edited by Raffaele Argiento, Federico Camerlenghi, Sally Paganin. - 1st ed. 2022. - XI, 117 p. 21 illus., 14 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,4052194-1017 ;. - Springer Proceedings in Mathematics & Statistics,125.
1 Andrej Srakar, Approximate Bayesian algorithm for tensor robust principal component analysis -- 2 Yuanqi Chu, Xueping Hu, Keming Yu, Bayesian Quantile Regression for Big Data Analysis -- 3 Peter Strong, Alys McAlphine, Jim Smith, Towards A Bayesian Analysis of Migration Pathways using Chain Event Graphs of Agent Based Models -- 4 Giorgos Tzoumerkas, Dimitris Fouskakis, Power-Expected-Posterior Methodology with Baseline Shrinkage Priors -- 5 Mica Teo, Sara Wade, Bayesian nonparametric scalar-on-image regression via Potts-Gibbs random partition models -- 6 Alessandro Colombi, Block Structured Graph Priors in Gaussian Graphical Models -- 7 Jessica Pavani, Paula Moraga, A Bayesian joint spatio-temporal model for multiple mosquito-borne diseases -- 8 Ivan Gutierrez, Luis Gutierrez, Danilo Alvare, A Bayesian nonparametric test for cross-group differences relative to a control -- 9 Francesco Gaffi, Antonio Lijoi, Igor Pruenster, Specification of the base measure of nonparametric priors via random means -- 10 Matteo Pedone, Raffaele Argiento, Francesco Claudio Stingo, Bayesian Nonparametric Predictive Modeling for Personalized Treatment Selection -- 11 Gabriel Calvo, carmen armero, Virgilio Gómez-Rubio, Guido Mazzinari, Bayesian growth curve model for studying the intra-abdominal volume during pneumoperitoneum for laparoscopic surgery.
This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.
ISBN: 9783031164279
Standard No.: 10.1007/978-3-031-16427-9doiSubjects--Topical Terms:
1098688
Stochastic Processes.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
New Frontiers in Bayesian Statistics = BAYSM 2021, Online, September 1–3 /
LDR
:03673nam a22004095i 4500
001
1085931
003
DE-He213
005
20221126192832.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783031164279
$9
978-3-031-16427-9
024
7
$a
10.1007/978-3-031-16427-9
$2
doi
035
$a
978-3-031-16427-9
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
245
1 0
$a
New Frontiers in Bayesian Statistics
$h
[electronic resource] :
$b
BAYSM 2021, Online, September 1–3 /
$c
edited by Raffaele Argiento, Federico Camerlenghi, Sally Paganin.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XI, 117 p. 21 illus., 14 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1017 ;
$v
405
505
0
$a
1 Andrej Srakar, Approximate Bayesian algorithm for tensor robust principal component analysis -- 2 Yuanqi Chu, Xueping Hu, Keming Yu, Bayesian Quantile Regression for Big Data Analysis -- 3 Peter Strong, Alys McAlphine, Jim Smith, Towards A Bayesian Analysis of Migration Pathways using Chain Event Graphs of Agent Based Models -- 4 Giorgos Tzoumerkas, Dimitris Fouskakis, Power-Expected-Posterior Methodology with Baseline Shrinkage Priors -- 5 Mica Teo, Sara Wade, Bayesian nonparametric scalar-on-image regression via Potts-Gibbs random partition models -- 6 Alessandro Colombi, Block Structured Graph Priors in Gaussian Graphical Models -- 7 Jessica Pavani, Paula Moraga, A Bayesian joint spatio-temporal model for multiple mosquito-borne diseases -- 8 Ivan Gutierrez, Luis Gutierrez, Danilo Alvare, A Bayesian nonparametric test for cross-group differences relative to a control -- 9 Francesco Gaffi, Antonio Lijoi, Igor Pruenster, Specification of the base measure of nonparametric priors via random means -- 10 Matteo Pedone, Raffaele Argiento, Francesco Claudio Stingo, Bayesian Nonparametric Predictive Modeling for Personalized Treatment Selection -- 11 Gabriel Calvo, carmen armero, Virgilio Gómez-Rubio, Guido Mazzinari, Bayesian growth curve model for studying the intra-abdominal volume during pneumoperitoneum for laparoscopic surgery.
520
$a
This book presents a selection of peer-reviewed contributions to the fifth Bayesian Young Statisticians Meeting, BaYSM 2021, held virtually due to the COVID-19 pandemic on 1-3 September 2021. Despite all the challenges of an online conference, the meeting provided a valuable opportunity for early career researchers, including MSc students, PhD students, and postdocs to connect with the broader Bayesian community. The proceedings highlight many different topics in Bayesian statistics, presenting promising methodological approaches to address important challenges in a variety of applications. The book is intended for a broad audience of people interested in statistics, and provides a series of stimulating contributions on theoretical, methodological, and computational aspects of Bayesian statistics.
650
2 4
$a
Stochastic Processes.
$3
1098688
650
2 4
$a
Markov Process.
$3
1366662
650
2 4
$a
Stochastic Analysis.
$3
1388640
650
2 4
$a
Stochastic Modelling.
$3
1366661
650
2 4
$a
Stochastic Networks.
$3
1390161
650
1 4
$a
Mathematical Statistics.
$3
1366363
650
0
$a
Markov processes.
$3
527825
650
0
$a
Stochastic analysis.
$3
560202
650
0
$a
Stochastic models.
$3
683908
650
0
$a
Stochastic processes.
$3
528256
650
0
$a
Mathematical statistics.
$3
527941
700
1
$a
Paganin, Sally.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1392534
700
1
$a
Camerlenghi, Federico.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1392533
700
1
$a
Argiento, Raffaele.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1141716
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783031164262
776
0 8
$i
Printed edition:
$z
9783031164286
776
0 8
$i
Printed edition:
$z
9783031164293
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-031-16427-9
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入