語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stochastic Approximation: A Dynamical Systems Viewpoint = Second Edition /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Stochastic Approximation: A Dynamical Systems Viewpoint/ by Vivek S. Borkar.
其他題名:
Second Edition /
作者:
Borkar, Vivek S.
面頁冊數:
XII, 268 p.online resource. :
Contained By:
Springer Nature eBook
標題:
Control and Systems Theory. -
電子資源:
https://doi.org/10.1007/978-81-951961-1-1
ISBN:
9788195196111
Stochastic Approximation: A Dynamical Systems Viewpoint = Second Edition /
Borkar, Vivek S.
Stochastic Approximation: A Dynamical Systems Viewpoint
Second Edition /[electronic resource] :by Vivek S. Borkar. - 1st ed. 2022. - XII, 268 p.online resource. - Texts and Readings in Mathematics,482366-8725 ;. - Texts and Readings in Mathematics,71.
1. Introduction -- 2. Convergence Analysis -- 3. Finite Time Bounds and Traps -- 4. Stability Criteria -- 5. Stochastic Recursive Inclusions -- 6. Asynchronous Schemes -- 7. A Limit Theorem for Fluctuations -- 8. Multiple Timescales -- 9. Constant Stepsize Algorithms -- 10. General Noise Models -- 11. Stochastic Gradient Schemes -- 12. Liapunov and Related Systems -- 13. Appendix A: Topics in Analysis -- 14. Appendix B: Ordinary Differential Equations -- 15. Appendix C: Topics in Probability -- Bibliography -- Index. .
This book serves as an advanced text for a graduate course on stochastic algorithms for graduate students in probability and statistics, engineering, economics and machine learning. This second edition gives a comprehensive treatment of stochastic approximation algorithms based on the “ordinary differential equation (ODE) approach” which analyses the algorithm in terms of a limiting ODE. It has a streamlined treatment of the classical convergence analysis and includes several recent developments such as concentration bounds, avoidance of traps, stability tests, distributed and asynchronous schemes, multiple time scales, general noise models, etc., and a category-wise exposition of many important applications. It is also a useful reference for researchers and practitioners in the field.
ISBN: 9788195196111
Standard No.: 10.1007/978-81-951961-1-1doiSubjects--Topical Terms:
1211358
Control and Systems Theory.
LC Class. No.: QA276-280
Dewey Class. No.: 519.5
Stochastic Approximation: A Dynamical Systems Viewpoint = Second Edition /
LDR
:02603nam a22003735i 4500
001
1086402
003
DE-He213
005
20221213111418.0
007
cr nn 008mamaa
008
221228s2022 ii | s |||| 0|eng d
020
$a
9788195196111
$9
978-81-951961-1-1
024
7
$a
10.1007/978-81-951961-1-1
$2
doi
035
$a
978-81-951961-1-1
050
4
$a
QA276-280
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.5
$2
23
100
1
$a
Borkar, Vivek S.
$4
aut
$4
http://id.loc.gov/vocabulary/relators/aut
$3
891728
245
1 0
$a
Stochastic Approximation: A Dynamical Systems Viewpoint
$h
[electronic resource] :
$b
Second Edition /
$c
by Vivek S. Borkar.
250
$a
1st ed. 2022.
264
1
$a
Gurgaon :
$b
Hindustan Book Agency :
$b
Imprint: Hindustan Book Agency,
$c
2022.
300
$a
XII, 268 p.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Texts and Readings in Mathematics,
$x
2366-8725 ;
$v
48
505
0
$a
1. Introduction -- 2. Convergence Analysis -- 3. Finite Time Bounds and Traps -- 4. Stability Criteria -- 5. Stochastic Recursive Inclusions -- 6. Asynchronous Schemes -- 7. A Limit Theorem for Fluctuations -- 8. Multiple Timescales -- 9. Constant Stepsize Algorithms -- 10. General Noise Models -- 11. Stochastic Gradient Schemes -- 12. Liapunov and Related Systems -- 13. Appendix A: Topics in Analysis -- 14. Appendix B: Ordinary Differential Equations -- 15. Appendix C: Topics in Probability -- Bibliography -- Index. .
520
$a
This book serves as an advanced text for a graduate course on stochastic algorithms for graduate students in probability and statistics, engineering, economics and machine learning. This second edition gives a comprehensive treatment of stochastic approximation algorithms based on the “ordinary differential equation (ODE) approach” which analyses the algorithm in terms of a limiting ODE. It has a streamlined treatment of the classical convergence analysis and includes several recent developments such as concentration bounds, avoidance of traps, stability tests, distributed and asynchronous schemes, multiple time scales, general noise models, etc., and a category-wise exposition of many important applications. It is also a useful reference for researchers and practitioners in the field.
650
2 4
$a
Control and Systems Theory.
$3
1211358
650
2 4
$a
Game Theory.
$3
1102060
650
2 4
$a
Operations Research and Decision Theory.
$3
1366301
650
2 4
$a
Probability Theory.
$3
1366244
650
2 4
$a
Artificial Intelligence.
$3
646849
650
1 4
$a
Statistical Theory and Methods.
$3
671396
650
0
$a
Control engineering.
$3
1249728
650
0
$a
Game theory.
$3
556918
650
0
$a
Operations research.
$3
573517
650
0
$a
Probabilities.
$3
527847
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Statistics .
$3
1253516
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
830
0
$a
Texts and Readings in Mathematics,
$x
2366-8717 ;
$v
71
$3
1266492
856
4 0
$u
https://doi.org/10.1007/978-81-951961-1-1
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入