Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Interactions with Lattice Polytopes = Magdeburg, Germany, September 2017 /
Record Type:
Language materials, printed : Monograph/item
Title/Author:
Interactions with Lattice Polytopes/ edited by Alexander M. Kasprzyk, Benjamin Nill.
Reminder of title:
Magdeburg, Germany, September 2017 /
other author:
Kasprzyk, Alexander M.
Description:
X, 364 p. 87 illus., 7 illus. in color.online resource. :
Contained By:
Springer Nature eBook
Subject:
Algebraic geometry. -
Online resource:
https://doi.org/10.1007/978-3-030-98327-7
ISBN:
9783030983277
Interactions with Lattice Polytopes = Magdeburg, Germany, September 2017 /
Interactions with Lattice Polytopes
Magdeburg, Germany, September 2017 /[electronic resource] :edited by Alexander M. Kasprzyk, Benjamin Nill. - 1st ed. 2022. - X, 364 p. 87 illus., 7 illus. in color.online resource. - Springer Proceedings in Mathematics & Statistics,3862194-1017 ;. - Springer Proceedings in Mathematics & Statistics,125.
G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton–Okounkov polytopes, Bach Le Tran, An Eisenbud–Goto-type upper bound for the Castelnuovo–Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes -- .
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
ISBN: 9783030983277
Standard No.: 10.1007/978-3-030-98327-7doiSubjects--Topical Terms:
1255324
Algebraic geometry.
LC Class. No.: QA564-609
Dewey Class. No.: 516.35
Interactions with Lattice Polytopes = Magdeburg, Germany, September 2017 /
LDR
:03882nam a22004095i 4500
001
1087196
003
DE-He213
005
20220608110757.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030983277
$9
978-3-030-98327-7
024
7
$a
10.1007/978-3-030-98327-7
$2
doi
035
$a
978-3-030-98327-7
050
4
$a
QA564-609
072
7
$a
PBMW
$2
bicssc
072
7
$a
MAT012010
$2
bisacsh
072
7
$a
PBMW
$2
thema
082
0 4
$a
516.35
$2
23
245
1 0
$a
Interactions with Lattice Polytopes
$h
[electronic resource] :
$b
Magdeburg, Germany, September 2017 /
$c
edited by Alexander M. Kasprzyk, Benjamin Nill.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
X, 364 p. 87 illus., 7 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1017 ;
$v
386
505
0
$a
G. Averkov, Difference between families of weakly and strongly maximal integral lattice-free polytopes -- V. Batyrev, A. Kasprzyk, and K. Schaller, On the Fine interior of three-dimensional canonical Fano polytopes -- M. Blanco, Lattice distances in 3-dimensional quantum jumps -- A. Cameron, R. Dinu, M. Michałek, and T. Seynnaeve, Flag matroids: algebra and geometry -- D. Cavey and E. Kutas, Classification of minimal polygons with specified singularity content -- T. Coates, A. Corti, and Genival da Silva Jr, On the topology of Fano smoothings -- S. Di Rocco and A. Lundman, Computing Seshadri constants on smooth toric surfaces -- A. Higashitani, The characterisation problem of Ehrhart polynomials of lattice polytopes -- J. Hofscheier, The ring of conditions for horospherical homogeneous spaces -- K. Jochemko, Linear recursions for integer point transforms -- V. Kiritchenko and M. Padalko, Schubert calculus on Newton–Okounkov polytopes, Bach Le Tran, An Eisenbud–Goto-type upper bound for the Castelnuovo–Mumford regularity of fake weighted projective spaces -- M. Pabiniak, Toric degenerations in symplectic geometry -- A. Petracci, On deformations of toric Fano varieties -- T. Prince, Polygons of finite mutation type -- Hendrik Süß, Orbit spaces of maximal torus actions on oriented Grassmannians of planes -- A. Tsuchiya, The reflexive dimension of (0, 1)-polytopes -- .
520
$a
This book collects together original research and survey articles highlighting the fertile interdisciplinary applications of convex lattice polytopes in modern mathematics. Covering a diverse range of topics, including algebraic geometry, mirror symmetry, symplectic geometry, discrete geometry, and algebraic combinatorics, the common theme is the study of lattice polytopes. These fascinating combinatorial objects are a cornerstone of toric geometry and continue to find rich and unforeseen applications throughout mathematics. The workshop Interactions with Lattice Polytopes assembled many top researchers at the Otto-von-Guericke-Universität Magdeburg in 2017 to discuss the role of lattice polytopes in their work, and many of their presented results are collected in this book. Intended to be accessible, these articles are suitable for researchers and graduate students interested in learning about some of the wide-ranging interactions of lattice polytopes in pure mathematics.
650
0
$a
Algebraic geometry.
$3
1255324
650
0
$a
Polytopes.
$3
884204
650
0
$a
Discrete mathematics.
$3
1254302
650
1 4
$a
Algebraic Geometry.
$3
670184
650
2 4
$a
Discrete Mathematics.
$3
796600
700
1
$a
Kasprzyk, Alexander M.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1394181
700
1
$a
Nill, Benjamin.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1394182
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030983260
776
0 8
$i
Printed edition:
$z
9783030983284
776
0 8
$i
Printed edition:
$z
9783030983291
830
0
$a
Springer Proceedings in Mathematics & Statistics,
$x
2194-1009 ;
$v
125
$3
1253690
856
4 0
$u
https://doi.org/10.1007/978-3-030-98327-7
912
$a
ZDB-2-SMA
912
$a
ZDB-2-SXMS
950
$a
Mathematics and Statistics (SpringerNature-11649)
950
$a
Mathematics and Statistics (R0) (SpringerNature-43713)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login