語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)/ edited by Rajiv Misra, Rudrapatna K. Shyamasundar, Amrita Chaturvedi, Rana Omer.
其他作者:
Omer, Rana.
面頁冊數:
XI, 362 p. 226 illus., 147 illus. in color.online resource. :
Contained By:
Springer Nature eBook
標題:
Big Data. -
電子資源:
https://doi.org/10.1007/978-3-030-82469-3
ISBN:
9783030824693
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)
[electronic resource] /edited by Rajiv Misra, Rudrapatna K. Shyamasundar, Amrita Chaturvedi, Rana Omer. - 1st ed. 2022. - XI, 362 p. 226 illus., 147 illus. in color.online resource. - Lecture Notes in Networks and Systems,2562367-3389 ;. - Lecture Notes in Networks and Systems,1.
Engagement Analysis of Students in Online Learning Environments -- Application of Artificial Intelligence to predict the Degradation of Potential mRNA Vaccines Developed To Treat SARS-CoV-2 -- An Application of Transfer Learning: Fine-Tuning BERT for Spam Email Classification -- MMAP : A Multi-Modal Automated Online Proctor -- Applying Extreme Gradient Boosting for Surface EMG based Sign Language recognition -- Review of Security Aspects of 51 Percent Attack on Blockchain -- Integrated Micro-video Recommender based on Hadoop and Web-Scrapper -- Automated Sleep Staging System based on Ensemble Learning Model using Single-Channel EEG signal -- Segregation and User Interactive Visualization of Covid- 19 Tweets using Text Mining Techniques -- Software Fault Prediction using Data Mining Techniques on Software Metrics.
This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2021) is intended to be used as a reference book for researchers and practitioners in the disciplines of computer science, electronics and telecommunication, information science, and electrical engineering. Machine learning and Big data analytics represent a key ingredients in the industrial applications for new products and services. Big data analytics applies machine learning for predictions by examining large and varied data sets—i.e., big data—to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that can help organizations make more informed business decisions.
ISBN: 9783030824693
Standard No.: 10.1007/978-3-030-82469-3doiSubjects--Topical Terms:
1017136
Big Data.
LC Class. No.: TA345-345.5
Dewey Class. No.: 620.00285
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)
LDR
:03110nam a22003975i 4500
001
1088816
003
DE-He213
005
20220116091439.0
007
cr nn 008mamaa
008
221228s2022 sz | s |||| 0|eng d
020
$a
9783030824693
$9
978-3-030-82469-3
024
7
$a
10.1007/978-3-030-82469-3
$2
doi
035
$a
978-3-030-82469-3
050
4
$a
TA345-345.5
072
7
$a
UN
$2
bicssc
072
7
$a
COM018000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
620.00285
$2
23
245
1 0
$a
Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021)
$h
[electronic resource] /
$c
edited by Rajiv Misra, Rudrapatna K. Shyamasundar, Amrita Chaturvedi, Rana Omer.
250
$a
1st ed. 2022.
264
1
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
XI, 362 p. 226 illus., 147 illus. in color.
$b
online resource.
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
347
$a
text file
$b
PDF
$2
rda
490
1
$a
Lecture Notes in Networks and Systems,
$x
2367-3389 ;
$v
256
505
0
$a
Engagement Analysis of Students in Online Learning Environments -- Application of Artificial Intelligence to predict the Degradation of Potential mRNA Vaccines Developed To Treat SARS-CoV-2 -- An Application of Transfer Learning: Fine-Tuning BERT for Spam Email Classification -- MMAP : A Multi-Modal Automated Online Proctor -- Applying Extreme Gradient Boosting for Surface EMG based Sign Language recognition -- Review of Security Aspects of 51 Percent Attack on Blockchain -- Integrated Micro-video Recommender based on Hadoop and Web-Scrapper -- Automated Sleep Staging System based on Ensemble Learning Model using Single-Channel EEG signal -- Segregation and User Interactive Visualization of Covid- 19 Tweets using Text Mining Techniques -- Software Fault Prediction using Data Mining Techniques on Software Metrics.
520
$a
This edited volume on machine learning and big data analytics (Proceedings of ICMLBDA 2021) is intended to be used as a reference book for researchers and practitioners in the disciplines of computer science, electronics and telecommunication, information science, and electrical engineering. Machine learning and Big data analytics represent a key ingredients in the industrial applications for new products and services. Big data analytics applies machine learning for predictions by examining large and varied data sets—i.e., big data—to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information that can help organizations make more informed business decisions.
650
2 4
$a
Big Data.
$3
1017136
650
2 4
$a
Machine Learning.
$3
1137723
650
2 4
$a
Computational Intelligence.
$3
768837
650
1 4
$a
Data Engineering.
$3
1226308
650
0
$a
Big data.
$3
981821
650
0
$a
Machine learning.
$3
561253
650
0
$a
Computational intelligence.
$3
568984
650
0
$a
Engineering—Data processing.
$3
1297966
700
1
$a
Omer, Rana.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1396016
700
1
$a
Chaturvedi, Amrita.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1396015
700
1
$a
Shyamasundar, Rudrapatna K.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1197916
700
1
$a
Misra, Rajiv.
$e
editor.
$4
edt
$4
http://id.loc.gov/vocabulary/relators/edt
$3
1310476
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer Nature eBook
776
0 8
$i
Printed edition:
$z
9783030824686
776
0 8
$i
Printed edition:
$z
9783030824709
830
0
$a
Lecture Notes in Networks and Systems,
$x
2367-3370 ;
$v
1
$3
1267315
856
4 0
$u
https://doi.org/10.1007/978-3-030-82469-3
912
$a
ZDB-2-INR
912
$a
ZDB-2-SXIT
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
950
$a
Intelligent Technologies and Robotics (R0) (SpringerNature-43728)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入